Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

In situ observation of electric-field induced magnetic domain evolution in (Ba,Ca)(Ti,Zr)O3–CoFe2O4 multiferroic films

  • 65 Accesses


The integration of ferroelectric and ferromagnetic promises an essential strategy of obtaining high performance electronic devices. In this work, we demonstrate in situ observation of electric field induced magnetic domain structure evolution for 0.5Ba(Ti0.8Zr0.2)O3–0.5(Ba0.7Ca0.3)TiO3–CoFe2O4 (BZT–0.5BCT/CFO) films, which manifests the magnetoelectric (ME) coupling between ferroelectric BZT–0.5BCT and ferrimagnetic CFO. The multiferroic behaviors of BZT–0.5BCT/CFO bilayers thin films were characterized by measuring ferroelectric domains, ferroelectric and ferrimagnetic hysteresis loops. The magnetic domain structure were investigated as functions of electric field, when the sample is applied with a voltage of 3 V, approximately 49.2% of the magnetization domain was varied in CFO thin films. The modulation of the domain structure could be attributed to the strain-induced mechanical transduction between the ferroelectric and magnetic films and modulation of the electron density of the CFO films. Direct observation of electric field induced magnetic domain evolution is significant since it gives a direct evidence of magnetoelectric coupling effect.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    N.A. Spaldin, R. Ramesh, Nat. Mater. 18, 203–212 (2019)

  2. 2.

    J.M. Hu, Z. Li, L.Q. Chen, C.W. Nan, Nat. Commun. 2, 553 (2011)

  3. 3.

    B. Dhanalakshmi, P. Kollu, C.H.W. Barnes, B.P. Rao, P.S.V. Subba Rao, Appl. Phys. A 5, 124 (2018)

  4. 4.

    L. Wang, D. Wang, Q. Cao, Y. Zheng, H. Xuan, J. Gao, Y. Du, Sci. Rep. 2, 223 (2012)

  5. 5.

    N. Kumar, A. Shukla, R.N.P. Choudhary, Phys. Lett. 381, 2721–2730 (2017)

  6. 6.

    N. Kumar, A. Shukla, R.N.P. Choudhary, Progress Nat. Sci. Mater. Int. 28, 308–314 (2018)

  7. 7.

    N. Kumar, A. Shukla, Int. J. Mod. Phys. B 32, 1840069 (2018)

  8. 8.

    N. Kumar, A. Shukla, R.N.P. Choudhary, J. Alloys Comp. 747, 895–904 (2018)

  9. 9.

    N. Kumar, A. Shukla, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 28, 6673–6684 (2017)

  10. 10.

    N. Kumar, A. Shukla, N. Kumar, R.N.P. Choudhary, A. Kumar, RSC Adv. 8, 36939–36950 (2018)

  11. 11.

    M. Fiebig, T. Lottermoser, D. Meier, M. Trassin, Nat. Rev. Mater. 1, 16046 (2016)

  12. 12.

    Y. Zhou, X.H. Li, J.F. Wang, H.M. Zhou, D. Cao, Z.W. Jiao, L. Xu, Q.H. Li, Appl. Phys. A 124, 335 (2018)

  13. 13.

    P.R. Mandal, T.K. Nath, Appl. Phys. A 112, 789 (2013)

  14. 14.

    W. Liu, X. Ren, Phys. Rev. Lett. 103, 257602 (2010)

  15. 15.

    A. Piorra, A. Petraru, H. Kohlstedt, M. Wuttig, E. Quandt, J. Appl. Phys. 109, 104101 (2011)

  16. 16.

    M. Naveed-Ul-Haq, V.V. Shvartsman, S. Salamon, H. Wende, H. Trivedi, A. Mumtaz, D.C. Lupascu, Sci. Rep. 6, 32164 (2016)

  17. 17.

    M. Naveed-Ul-Haq, V.V. Shvartsman, H. Trivedi, S. Salamon, S. Webers, H. Wende, U. Hagemann, J. Schröder, D.C. Lupascu, Acta Mater. 144, 305–313 (2018)

  18. 18.

    R. Asiaie, W. Zhu, S.A. Akbar, P.K. Dutta, Chem. Mater. 8, 226 (1996)

  19. 19.

    Y.D. Kolekar, A. Bhaumik, P.A. Shaikh, C.V. Ramana, K. Ghosh, J. Appl. Phys. 115, 154102 (2014)

  20. 20.

    M.L. Mngdal, G.P. Mambrini, D.P. Volanti, E.R. Leite, M.O. Orlandi, P.S. Pizani, V.R. Mastelaro, C.O. PaivaSantos, E. Longo, J.A. Varela, Chem. Mater. 20, 5381 (2008)

  21. 21.

    F.A. Rabuetti, R.L. Brutchey, J. Am. Chem. Soc. 134, 9475 (2012)

  22. 22.

    T.C. Huang, M.T. Wang, H.S. Sheu, W.F. Hsieh, J. Phys. Condens. Matter. 19, 476212 (2007)

  23. 23.

    Y. Shiratori, C. Pithan, J. Dornseier, R. Waser, J. Raman Spectrosc. 38, 1288 (2007)

  24. 24.

    J.G. Lee, K.P. Chae, J.C. Sur, J. Magn, Magn. Mater. 267, 161–167 (2003)

  25. 25.

    X. Chen, X. Zhu, W. Xiao, G. Liu, Y.P. Feng, J. Ding, R.W. Li, ACS Nano 9, 4210–4218 (2015)

Download references


This work was supported by National Natural Science Foundation of China (Grant nos. 51502204, 61404091, 61274113, 61804108 and 51502203), the National Key Research and Development Program of China (Grant no. 2017YFB0405600) and Natural Science Foundation of Tianjin City (Grant nos. 18JCYBJC85700, 18JCZDJC30500 and 17JCYBJC16100).

Author information

Correspondence to Yemei Han or Wei Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ren, X., Han, Y., Tao, Z. et al. In situ observation of electric-field induced magnetic domain evolution in (Ba,Ca)(Ti,Zr)O3–CoFe2O4 multiferroic films. Appl. Phys. A 126, 54 (2020). https://doi.org/10.1007/s00339-019-3185-5

Download citation