Applied Physics A

, 125:874 | Cite as

Growth of endotaxial Ge nanocrystals in Si(100) matrix via low-energy ion implantation

  • Susheel Kumar Gundanna
  • Puspendu Guha
  • B. Sundaravel
  • Umananda M. BhattaEmail author


Embedded structures in a crystalline substrate, endotaxial structures, play a major role in thermoelectric and optoelectronic applications. Here, we have fabricated Ge nanostructures inside Si(100) matrix via low-energy Ge+ ion implantation. Thermally grown SiO2 layer over the Si substrate has been used as a protective coating to avoid low-energy sputtering of the Si surface. 300 keV Ge ions are implanted into Si(100) matrix at two different fluences, 1 × 1015 and 5 × 1015 ions/cm2. After annealing the as-implanted specimens at 800 °C under the inert atmosphere for 1 h, the growth of Ge nanoclusters has been studied by Raman spectroscopy. Endotaxial nature of the Ge nanocrystals has been studied using cross-sectional high-resolution TEM. The compatibility between Ge and Si at the nanocrystal/matrix interface has been discussed in detail using high-resolution phase-contrast imaging.



This work is funded by UGC-DAE-CSR-KC/CRS/15/IOP/MS/01 collaborative research project. The authors would like to thank Prof. P V Satyam, IOP, Bhubaneswar, for providing access to the electron microscopy facility.

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest to declare.


  1. 1.
    X.L. Wu, L.Y. Jiang, F.F. Cao, Y.G. Guo, L.J. Wan, LiFePO4 nanoparticles embedded in a nanoporous carbon matrix: superior cathode material for electrochemical energy-storage devices. Adv. Mater. 21(25–26), 2710–2714 (2009). CrossRefGoogle Scholar
  2. 2.
    C. Zhu, X. Mu, P.A. van Aken, Y. Yu, J. Maier, Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew. Chem. Int. Ed 53(8), 2152–2156 (2014). CrossRefGoogle Scholar
  3. 3.
    N.C. Sharma, S.V. Sahi, S. Nath, J.G. Parsons, J.L. Gardea-Torresde, T. Pal, Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials. Environ. Sci. Technol 41(14), 5137–5142 (2007). ADSCrossRefGoogle Scholar
  4. 4.
    Y.G. Lv, Z.S. Deng, J. Liu, 3-D numerical study on the induced heating effects of embedded micro/nanoparticles on human body subject to external medical electromagnetic field. IEEE Trans. Nanobiosci 4(4), 284–294 (2005). CrossRefGoogle Scholar
  5. 5.
    V.A. Moshnikov, I. Gracheva, A.S. Lenshin, Y.M. Spivak, M.G. Anchkov, V.V. Kuznetsov, J.M. Olchowik, Porous silicon with embedded metal oxides for gas sensing applications. J. Non-Cryst Solids 358(3), 590–595 (2012). ADSCrossRefGoogle Scholar
  6. 6.
    S. Mirabella, S. Cosentino, A. Gentile, G. Nicotra, N. Piluso, L.V. Mercaldo, A. Terrasi, Matrix role in Ge nanoclusters embedded in Si3N4 or SiO2. Appl. Phys. Lett. 101(1), 011911 (2012). ADSCrossRefGoogle Scholar
  7. 7.
    L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, D.F. Priolo, Optical gain in silicon nanocrystals. Nature 408(6811), 440 (2000). ADSCrossRefGoogle Scholar
  8. 8.
    H. Rinnert, M. Vergnat, A. Burneau, Evidence of light-emitting amorphous silicon clusters confined in a silicon oxide matrix. J. Appl. Phys. 89(1), 237–243 (2001). ADSCrossRefGoogle Scholar
  9. 9.
    S. Banerjee, S. Nozaki, H. Morisaki, Coulomb-blockade effect observed at room temperature in Ge nanocrystalline films deposited by the cluster-beam evaporation technique. Appl. Phys. Lett. 76(4), 445–447 (2000). ADSCrossRefGoogle Scholar
  10. 10.
    R.R. Juluri, A. Rath, A. Ghosh, A. Bhukta, R. Sathyavathi, D.N. Rao, F. Krause, Coherently embedded Ag nanostructures in Si: 3D imaging and their application to SERS. Sci. Rep. 4, 4633 (2014). CrossRefGoogle Scholar
  11. 11.
    R.R. Juluri, A. Rath, A. Ghosh, P.V. Satyam, Substrate symmetry driven endotaxial silver nanostructures by chemical vapor deposition. J. Phys. Chem. C 117(25), 13247–13251 (2013). CrossRefGoogle Scholar
  12. 12.
    K. Nagarajappa, P. Guha, A. Thirumurugan, P.V. Satyam, U.M. Bhatta, Low-energy ion beam synthesis of Ag endotaxial nanostructures in silicon. Appl. Phys. A 124(6), 402 (2018). ADSCrossRefGoogle Scholar
  13. 13.
    P. Guha, R.R. Juluri, A. Bhukta, A. Ghosh, S. Maiti, A. Bhattacharyya, P.V. Satyam, In situ synchrotron X-ray diffraction study of coherently embedded silver nanostructure growth in silicon. CrystEngComm 19(45), 6811–6820 (2017). CrossRefGoogle Scholar
  14. 14.
    S. Li, X. Huang, Q. Liu, X. Cao, F. Huo, H. Zhang, C.L. Gan, Vapor–liquid–solid growth of endotaxial semiconductor nanowires. Nano Lett. 12(11), 5565–5570 (2012). ADSCrossRefGoogle Scholar
  15. 15.
    Y. Maeda, Visible photoluminescence from nanocrystallite Ge embedded in a glassy SiO2 matrix: evidence in support of the quantum-confinement mechanism. Phys. Rev. B 51(3), 1658 (1995). ADSCrossRefGoogle Scholar
  16. 16.
    O. Kienzle, F. Ernst, M. Rühle, O.G. Schmidt, K. Eberl, Germanium “quantum dots” embedded in silicon: quantitative study of self-alignment and coarsening. Appl. Phys. Lett. 74(2), 269–271 (1999). ADSCrossRefGoogle Scholar
  17. 17.
    C. Hua, A.J. Minnich, Importance of frequency-dependent grain boundary scattering in nanocrystalline silicon and silicon–germanium thermoelectrics. Semicond. Sci. Technol. 29(12), 124004 (2014). ADSCrossRefGoogle Scholar
  18. 18.
    M. Yamamoto, T. Koshikawa, T. Yasue, H. Harima, K. Kajiyama, Formation of size controlled Ge nanocrystals in SiO2 matrix by ion implantation and annealing. Thin Solid Films 369(1–2), 100–103 (2000). ADSCrossRefGoogle Scholar
  19. 19.
    J.G. Zhu, C.W. White, J.D. Budai, S.P. Withrow, Y. Chen, Growth of Ge, Si, and SiGe nanocrystals in SiO2 matrices. J. Appl. Phys. 78(7), 4386–4389 (1995). ADSCrossRefGoogle Scholar
  20. 20.
    G. Susheel Kumar, P. Guha, K. Nagarajappa, U.M. Bhatta, Growth of embedded Ge nanoclusters inside spatially confined SiO2 matrix: an in-situ TEM study. Phys. E 114, 113637 (2019). CrossRefGoogle Scholar
  21. 21.
    C.Y. Peng, C.F. Huang, Y.C. Fu, Y.H. Yang, C.Y. Lai, S.T. Chang, C.W. Liu, Comprehensive study of the Raman shifts of strained silicon and germanium. J. Appl. Phys. 105(8), 083537 (2009). ADSCrossRefGoogle Scholar
  22. 22.
    S. Vadavalli, S. Valligatla, B. Neelamraju, M.H. Dar, A. Chiasera, M. Ferrari, N.R. Desai, Optical properties of germanium nanoparticles synthesized by pulsed laser ablation in acetone. Front. Phys. 2, 57 (2014). CrossRefGoogle Scholar
  23. 23.
    K. Biswas, J. He, Q. Zhang, G. Wang, C. Uher, V.P. Dravid, M.G. Kanatzidis, Strained endotaxial nanostructures with high thermoelectric figure of merit. Nat. Chem. 3(2), 160 (2011). CrossRefGoogle Scholar
  24. 24.
    Supplementary online materials for, K. Biswas, J. He, Q. Zhang, G. Wang, C. Uher, V.P. Dravid, M. G. Kanatzidis, Strained endotaxial nanostructures with high thermoelectric figure of merit. Nat. Chem. 3(2), 160 (2011). Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Susheel Kumar Gundanna
    • 1
  • Puspendu Guha
    • 2
    • 3
    • 4
  • B. Sundaravel
    • 5
  • Umananda M. Bhatta
    • 1
    Email author
  1. 1.Centre for Incubation, Innovation, Research and Consultancy, Jyothy Institute of TechnologyVisvesvaraya Technological UniversityBengaluruIndia
  2. 2.Institute of PhysicsSachivalaya MargBhubaneswarIndia
  3. 3.Homi Bhabha National Institute, Training School ComplexMumbaiIndia
  4. 4.RIAM, College of EngineeringSeoul National UniversitySeoulRepublic of Korea
  5. 5.Materials Science GroupIndira Gandhi Centre for Atomic ResearchKalpakamIndia

Personalised recommendations