Advertisement

Applied Physics A

, 125:871 | Cite as

Prospect of silver nanowire (AgNW) in development of simple and cost-effective vertical organic light-emitting transistors

  • M. A. Mohd SarjidanEmail author
  • W. H. Abd. MajidEmail author
Article
  • 16 Downloads

Abstract

Despite a great potential for low-voltage display applications, vertical organic light-emitting transistors (VOLETs) suffer serious issues of high-cost and complex fabrication techniques, notably for the intermediate electrode. To address this problem, this study demonstrates a cost-effective and simple approach to fabricate a VOLET device by utilising spin-coated silver nanowires (AgNWs) as an intermediate electrode. AgNWs exhibit high electrical conductivity, high porosity and high optical transparency, which qualify them as a perfect candidate for the intermediate electrode in VOLETs. To show the potential of AgNWs in VOLET devices using a facile, cost-effective spin-coated method, two types of VOLETs, namely, the Schottky barrier (SB) VOLET and static induction transistor (SIT) VOLET, were fabricated and analysed. Interestingly, both the devices show transistor behaviour when the Vg is varied, implying a fully functional VOLET device. We believe that this is one of the simplest methods to fabricate VOLETs without compromising the device characteristics demonstrated to date.

Notes

Acknowledgements

This work was supported by the Malaysia Ministry of Education (MOE) under LRGS (Wide Band Gap Semiconductor), Project No.: LR001A-2016. The authors also would like to thank to Dr. Azrina Talik Sisin for her valuable and great scientific insights in improving the manuscript.

References

  1. 1.
    F Cicoira C Santato 2007 Adv. Funct. Mater. 17 3421CrossRefGoogle Scholar
  2. 2.
    Z Xu S-H Li L Ma G Li Y Yang 2007 Appl. Phys. Lett. 91 92911CrossRefGoogle Scholar
  3. 3.
    H Yu Z Dong J Guo D Kim F So 2016 ACS Appl. Mater. Interfaces 8 10430CrossRefGoogle Scholar
  4. 4.
    S Yang W Du J Qi Z Lou 2009 J. Lumin. 129 1973CrossRefGoogle Scholar
  5. 5.
    S.-Y. Yang, W.-S. Du, J.-R. Qi, Z.-D. Lou, Wuli Xuebao/Acta Phys. Sin. 58, 3427 (2009)Google Scholar
  6. 6.
    B Liu MA McCarthy Y Yoon DY Kim Z Wu F So PH Holloway JR Reynolds J Guo AG Rinzler 2008 Adv. Mater. 20 3605CrossRefGoogle Scholar
  7. 7.
  8. 8.
    J Kwon YD Suh J Lee P Lee S Han S Hong J Yeo H Lee SH Ko 2018 J. Mater. Chem. C 6 7445CrossRefGoogle Scholar
  9. 9.
    X Yu X Yu J Zhang L Chen Y Long D Zhang 2017 Nano Res. 10 3706CrossRefGoogle Scholar
  10. 10.
    J Hwang H-S Kim JW Roh 2018 Int. J. Nanotechnol. 15 630ADSCrossRefGoogle Scholar
  11. 11.
    P. Maisch, K.C. Tam, L. Lucera, H.J. Egelhaaf, H. Scheiber, E. Maier, C.J. Brabec, Org. Electron. Phys. Mater. Appl. 38, 139 (2016)Google Scholar
  12. 12.
    P. Maisch, K.C. Tam, L. Lucera, F.W. Fecher, H.J. Egelhaaf, H. Scheiber, E. Maier, C.J. Brabec Inkjet printing of semitransparent electrodes for photovoltaic applications, in Proceedings of SPIE—The International Society for Optical Engineering (2016). https://www.scopus.com/inward/record.uri?eid=2-s2.0-85006968409&doi=10.1117%2f12.2236968&partnerID=40&md5=1253e6d74a9c5f29f8d35be0af8b4367
  13. 13.
    A. Falco, M. Petrelli, E. Bezzeccheri, A. Abdelhalim, P. Lugli, Org. Electron. Phys. Mater. Appl. 39, 340 (2016)Google Scholar
  14. 14.
    J-Y Lee D Shin J Park 2016 Thin Solid Films 608 34ADSCrossRefGoogle Scholar
  15. 15.
    J-H Choe A-Y Jang J-H Kim C-H Chung K-H Hong 2017 J. Korean Inst. Met. Mater. 55 509CrossRefGoogle Scholar
  16. 16.
    YH Wang X Yang DX Du XF Zhang 2019 J. Mater. Sci. Mater. Electron. 30 13238CrossRefGoogle Scholar
  17. 17.
    D Kumar V Stoichkov E Brousseau GC Smith J Kettle 2019 Nanoscale 11 5760CrossRefGoogle Scholar
  18. 18.
    WW He XH Yan YM Liang YF Long C Pan JL Zhao L Chen W Xiong QX Liu 2018 RSC Adv. 8 12146CrossRefGoogle Scholar
  19. 19.
    M.A. Mohd Sarjidan, A. Shuhaimi, W.H.A.H.A. Majid, Curr. Appl. Phys. 18, 1415 (2018)Google Scholar
  20. 20.
    F Wu Z Li F Ye X Zhao T Zhang X Yang 2016 J. Mater. Chem. C 4 11074CrossRefGoogle Scholar
  21. 21.
  22. 22.
    J Jo MG Kim H Lee H Choi C Shin IEEE Trans 2017 Electron Devices 64 4974ADSCrossRefGoogle Scholar
  23. 23.
  24. 24.
    M.A. Mohd Sarjidan, A. Shuhaimi, W.H. Abd. Majid, J. Nanosci. Nanotechnol. 19, 6995 (2019)Google Scholar
  25. 25.
    K Kudo 2005 Curr. Appl. Phys. 5 337ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Low Dimensional Materials Research Centre, Department of PhysicsUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations