Advertisement

Applied Physics A

, 125:870 | Cite as

Evaluation of structural and magnetic property of Cr-doped MnBi permanent magnet material

  • Kritika Anand
  • Nithya Christopher
  • Nidhi SinghEmail author
Article
  • 39 Downloads

Abstract

In the present study, the effects of doping on the LTP-MnBi phase formation as well as on Mn to Bi ratio in the matrix were investigated. Structural- and magnetic properties of nanocrystalline Mn50−xBi50Crx (x = 0, 1.5, 3, 5) permanent magnet material, prepared by melt-spinning were studied and correlated with the thermal analysis. A more stabilized LTP-MnBi phase is formed with Cr doping. A large enhancement in the coercivity along with magnetization is observed with Cr doping. A magnetization of 54.2 emu/g and a coercivity value of 11.9 kOe were obtained for the composition Mn47Bi50Cr3 at room temperature, which increases to 17.5 kOe at 150 °C. An interesting correlation exists between the thermal as well as the structural- and magnetic properties of the compound. Also, a decrease in magnetic transition temperature is observed in Cr-doped samples, which has been studied in detail. This decrease in magnetic transition temperature helps in the decoupling of structural- and magnetic transition temperature, thereby leading to a formation of more stable LTP-MnBi compound.

Graphic abstract

Notes

Acknowledgements

This work was carried out under CSIR (India) Network Project PSC-0109. KA and NC acknowledge CSIR for financial assistance. Authors would like to thank Radhey Shyam and Naval Kishor for their technical support.

References

  1. 1.
    J.M.D. Coey, I.E.E.E. Trans, Magn. 47, 4671 (2011)CrossRefGoogle Scholar
  2. 2.
    M.J. Kramer, R.W. McCallum, I.A. Anderson, S. Constantinides, J. Min. Met. Mater. Soc. 64, 752 (2012)CrossRefGoogle Scholar
  3. 3.
    K. Anand, N. Christopher, J. Kumar, A. Gupta, N. Singh, J. Magn. Magn. Mater. 476, 29–34 (2019)ADSCrossRefGoogle Scholar
  4. 4.
    N. Singh, K. Anand, N. Christopher, A. Bhattacharya, A.K. Srivastava, J. Mater. Chem. C 5, 11832–11836 (2017)CrossRefGoogle Scholar
  5. 5.
    N.R. Christopher, N. Singh, S.K. Singh, B. Gahtori, S.K. Mishra, A. Dhar, V.P.S. Awana, J. Supercond. Novel. Magn. 26(11), 3161–3165 (2013)CrossRefGoogle Scholar
  6. 6.
    B.W. Roberts, Phys. Rev. 104, 607–616 (1956)ADSCrossRefGoogle Scholar
  7. 7.
    E. Adams, Rev. Modern Phys. 25, 1 (1953)CrossRefGoogle Scholar
  8. 8.
    J.B. Yang, W.B. Yelon, W.J. James, Q. Cai, M. Kornecki, S. Roy, N. Ali, P. L’Heritier, J. Phys. Condens. Matter 14, 6509–6519 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    T. Chen, W.E. Stutius, I.E.E.E. Trans, Magn. 10, 581 (1974)CrossRefGoogle Scholar
  10. 10.
    X. Guo, X. Chen, Z. Altounian, J.O. Ström-Olsen, Phys. Rev. B 46, 14578 (1992)ADSCrossRefGoogle Scholar
  11. 11.
    A.F. Andresen, W. Halg, P. Fischer, E. Stoll, Acta Chem. Scand. 21, 1543 (1967)CrossRefGoogle Scholar
  12. 12.
    P.W. Anderson, Phys. Rev. 115, 2 (1959)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    R. Bandaru, T.D. Sands, D. Weller, E.E. Marinero, J. Appl. Phys. 86, 3 (1999)CrossRefGoogle Scholar
  14. 14.
    T. Chen, J. Appl. Phys. 45, 2358 (1974)ADSCrossRefGoogle Scholar
  15. 15.
    R. Heikes, Phys. Rev. 99, 446 (1955)ADSCrossRefGoogle Scholar
  16. 16.
    J.B. Goodenough, Magnetism and the Chemical Bond (Wiley, New York, 1967)Google Scholar
  17. 17.
    A. West, Solid State Chemistry and Its Applications (Wiley, New York, 1984)Google Scholar
  18. 18.
    M. Venkataraman, J. P. Neumann, in Binary Alloy Phase Diagrams, edited by H. Okamoto and P. R. Subramanian ~ASM International, Materials Park, OH (1988)Google Scholar
  19. 19.
    H. Göbel, E. Wolfgang, H. Harms, Phys. Status Solidi A 34, 553 (1976)ADSCrossRefGoogle Scholar
  20. 20.
    K. Lee, J.C. Suits, G.B. Street, Appl. Phys. Lett. 26, 27 (1975)ADSCrossRefGoogle Scholar
  21. 21.
    P. Kharel, V.R. Shah, R. Skomski, J.E. Shield, D.J. Sellmyer, IEEE Trans. Magn. 49, 7 (2013)CrossRefGoogle Scholar
  22. 22.
    P. Kharel, X. Li, S.R. Valloppilly, N.M. Al-Aqtash, K. Tarawneh, R.F. Sabirianov, R. Skomski, D.J. Sellmyer, J. Appl. Phys. 111, 07e326 (2012)CrossRefGoogle Scholar
  23. 23.
    V.V. Ramakrishna, S. Kavita, R. Gautam, T. Ramesh, R. Gopalan, J. Magn. Magn. Mater. 458, 23–29 (2018)ADSCrossRefGoogle Scholar
  24. 24.
    P. Bandaru, T.D. Sands, Y. Kubota, E.E. Marinero, Appl. Phys. Lett. 72, 1 (1998)CrossRefGoogle Scholar
  25. 25.
    R.F. Sabiryanov, S.S. Jaswal, J. Appl. Phys. 85(8), 15 (1999)CrossRefGoogle Scholar
  26. 26.
    P. Kharel, R. Skomski, P. Lukashev, R. Sabirianov, J.D. Sellmyer, Phys. Rev. B 84, 014431 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    A.R. West, Solid State Chemistry and its Applications (Wiley, New York, 1992)Google Scholar
  28. 28.
    S. Saha, R.T. Obermyer, B.J. Zande, V.K. Chandhok, S. Simizu, S.G. Sankar, J.A. Horton, J. Appl. Phys. 91(10), 8525–8527 (2002)ADSCrossRefGoogle Scholar
  29. 29.
    Y.B. Yang, X.G. Chen, S. Guo, A.R. Yan, Q.Z. Huang, M.M. Wu, D.F. Chen, Y.C. Yang, J.B. Yang, J. Magn. Magn. Mater. 330, 106–110 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    S. Kim, H. Moon, H. Jung, S.-M. Kim, H.-S. Lee, H. Choi-Yim, W. Lee, J Alloy Compd 708, 1245–1249 (2017)CrossRefGoogle Scholar
  31. 31.
    Y.B. Yang, X.G. Chen, R. Wu, J.Z. Wei, X.B. Ma, J.Z. Han, H.L. Du, S.Q. Liu, C.S. Wang, Y.C. Yang, Y. Zhang, J.B. Yang, J. Appl. Phys. 111, 07E312 (2012)CrossRefGoogle Scholar
  32. 32.
    S. Saha, R.T. Obermyer, B.J. Zande, V.K. Chandhok, S. Simizu, S.G. Sankara, J.A. Horton, J. Appl. Phys. 91, 10 (2002)Google Scholar
  33. 33.
    X. Guo, A. Zaluska, Z. Altounian, J.O. Strom-Olsen, J. Mater. Res. 5, 2646 (1990)ADSCrossRefGoogle Scholar
  34. 34.
    X. Guo, A. Zaluska, Z. Altounian, J.O. Strom-Olsen, J. Appl. Phys. 69, 6067 (1991)ADSCrossRefGoogle Scholar
  35. 35.
    N.V. Rama-Rao, G.C. Hadjipanayis, J. Alloys Compd. 629, 80–83 (2015)CrossRefGoogle Scholar
  36. 36.
    N.V. Rama-Rao, G.C. Hadjipanayis, J. Alloys Compd. 616, 319–322 (2014)CrossRefGoogle Scholar
  37. 37.
    G.R. Gajula, L.R. Buddiga, K.N. Chidambara-Kumar, M. Dasari, J. Mater. Sci. Mater. Electron. 30(4), 3889–3898 (2018)CrossRefGoogle Scholar
  38. 38.
    G.R. Gajula, L.R. Buddiga, J. Magn. Magn. Mater. 494, 165822 (2020)Google Scholar
  39. 39.
    D.T. Zhang, S. Cao, M. Yue, W.Q. Liu, J.X. Zhang, Y. Qiang, J. Appl. Phys. 109, 07A722 (2011)CrossRefGoogle Scholar
  40. 40.
    Y. Yang, J.-W. Kim, P.-Z. Si, H.-D. Qian, Y. Shin, X. Wang, J. Park, O.L. Li, Q. Wu, H. Ge, C.-J. Choi, J. Alloys Compd. (2018). https://doi.org/10.1016/j.jallcom.2018.07.311 CrossRefGoogle Scholar
  41. 41.
    K. Koyama, T. Onogi, Y. Mitsui, Y. Nakamori, S. Orimo, K. Watanabe, Mater. Trans. 48(9), 2414–2418 (2007)CrossRefGoogle Scholar
  42. 42.
    G.R. Gajulaa, L.R. Buddiga, K.N. Chidambara-Kumar, N. Vattikunta, M. Dasari, Physica B Phys. Condens. Mater. 560, 1–5 (2019)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
  2. 2.CSIR-National Physical LaboratoryDr. K.S Krishnan MargNew DelhiIndia

Personalised recommendations