Applied Physics A

, 125:860 | Cite as

Hydrogen cyanide sensor based on the porphyrin-like B4-doped [60]-fullerenes: a DFT study

  • Saeed Amir AslanzadehEmail author


Using density functional theory calculations, a porous C60 fullerene with B4 porphyrin-like cavity (C54B4) is designed, and its potential application is investigated in the HCN detection. The formation energy is predicted to be about − 155.5 kcal/mol, which is comparable with that of C54N4 nanocage (~ − 156.1 kcal/mol) and is somewhat less negative than that of [60] fullerene (~ − 161.0 kcal/mol). The C54B4 nanocage shows much higher electrical conductivity compared to the C60 and C54N4 nanocages. We found that the HCN adsorbs on the C54B4 nanocage via two different mechanisms, including vertical adsorption from its N-head and horizontal adsorption with N–C bond. These mechanisms differently affect the electronic properties of C54B4. The most stable HCN/C54B4 complex is that in which the HCN molecule lies on the center of B4 cavity so that each C or N atom is in connection with two B atoms with adsorption energy of about − 73.5 kcal/mol. Upon the HCN adsorption, a large charge transfer about 0.33 e and a great gap opening about 1.56 eV occurred for C54B4, which sharply increases the electrical resistance of C54B4, but its effect on work function is negligible. Thus, we concluded that C54B4 may be a promising electronic sensor for the HCN gas.


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    M. Prato, [60] Fullerene chemistry for materials science applications. J. Mater. Chem. 7, 1097–1109 (1997)CrossRefGoogle Scholar
  2. 2.
    J. Lu, X. Zhang, X. Zhao, Relativistic electronic structure calculations on endohedral Gd@C60, La@C60, Gd@C74, and La@C74. Appl. Phys. A 70, 461–464 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    F.A. Zaghmarzi, M. Zahedi, A. Mola, S. Abedini, S. Arshadi, S. Ahmadzadeh, N. Etminan, O. Younesi, E. Rahmanifar, M. Yoosefian, Fullerene-C60 and crown ether doped on C60 sensors for high sensitive detection of alkali and alkaline earth cations. Phys. E 87, 51–58 (2017)CrossRefGoogle Scholar
  4. 4.
    M. Shiraishi, M. Ramm, M. Ata, The characterization of plasma-polymerized C60 thin films. Appl. Phys. A 74, 613–616 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    M. Ramm, M. Ata, Deposition of C60 polymer films under various plasma conditions. Appl. Phys. A 70, 641–645 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    J. Beheshtian, A.A. Peyghan, Z. Bagheri, Functionalization of [60] fullerene with butadienes: A DFT study. Appl. Surf. Sci. 258, 8980–8984 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    R. Ghafouri, M. Anafcheh, Exploring magnetic properties inside full equatorial BN-substituted fullerenes Cn (n = 20, 24, 30, 36, 60, 80): a computational NICS characterization. Phys. E 44, 1386–1391 (2012)CrossRefGoogle Scholar
  8. 8.
    S.C. Veenstra, A. Heeres, G. Hadziioannou, G.A. Sawatzky, H.T. Jonkman, On interface dipole layers between C60 and Ag or Au. Appl. Phys. A 75, 661–666 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    M.T. Baei, A. Soltani, H. Rajabzadeh, E. Tazikeh-Lemeski, Structural and electronic properties of XY-doped (AlN, AlP, GaN, GaP) C 58 fullerenes: a DFT study. Russ. J. Inorg. Chem. 62, 1067–1076 (2017)CrossRefGoogle Scholar
  10. 10.
    E. Tazikeh-Lemeski, A. Soltani, M.T. Baei, M.B. Javan, S.M. Rad, Theoretical study on pure and doped B 12 N 12 fullerenes as thiophene sensor. Adsorption 24, 585–593 (2018)CrossRefGoogle Scholar
  11. 11.
    A. Soltani, A. Ghasemi, M.B. Javan, F. Ashrafi, J.C. Ince, F. Heidari, Adsorption of HCOH and H 2 S molecules on Al 12 P 12 fullerene: a DFT study. Adsorption 25, 235–245 (2019)CrossRefGoogle Scholar
  12. 12.
    C. Goyenola, S. Stafström, L. Hultman, G.K. Gueorguiev, Structural patterns arising during synthetic growth of fullerene-like sulfocarbide. J. Phys. Chem. C 116, 21124–21131 (2012)CrossRefGoogle Scholar
  13. 13.
    N. Hellgren, T. Berlind, G.K. Gueorguiev, M.P. Johansson, S. Stafström, L. Hultman, Fullerene-like BCN thin films: a computational and experimental study. Mater. Sci. Eng. B 113, 242–247 (2004)CrossRefGoogle Scholar
  14. 14.
    T. Guo, C. Jin, R. Smalley, Doping bucky: formation and properties of boron-doped buckminsterfullerene. J. Phys. Chem. 95, 4948–4950 (1991)CrossRefGoogle Scholar
  15. 15.
    L. Forró, L. Mihály, Electronic properties of doped fullerenes. Rep. Prog. Phys. 64, 649 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    H.R. Karfunkel, T. Dressler, A. Hirsch, Heterofullerenes: structure and property predictions, possible uses and synthesis proposals. J. Comput. Aided. Mol. Des. 6, 521–535 (1992)ADSCrossRefGoogle Scholar
  17. 17.
    M. Terrones, P. Ajayan, F. Banhart, X. Blase, D. Carroll, J.-C. Charlier, R. Czerw, B. Foley, N. Grobert, R. Kamalakaran, N-doping and coalescence of carbon nanotubes: synthesis and electronic properties. Appl. Phys. A 74, 355–361 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    L. Panchakarla, K. Subrahmanyam, S. Saha, A. Govindaraj, H. Krishnamurthy, U. Waghmare, C. Rao, Synthesis, structure, and properties of boron-and nitrogen-doped graphene. Adv. Mater. 21, 4726–4730 (2009)Google Scholar
  19. 19.
    D. Usachov, O. Vilkov, A. Gruneis, D. Haberer, A. Fedorov, V. Adamchuk, A. Preobrajenski, P. Dudin, A. Barinov, M. Oehzelt, Nitrogen-doped graphene: efficient growth, structure, and electronic properties. Nano Lett. 11, 5401–5407 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    D.H. Lee, W.J. Lee, W.J. Lee, S.O. Kim, Y.-H. Kim, Theory, synthesis, and oxygen reduction catalysis of Fe-porphyrin-like carbon nanotube. Phys. Rev. Lett. 106, 175502 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    K. Srinivasu, S.K. Ghosh, Transition metal decorated porphyrin-like porous fullerene: promising materials for molecular hydrogen adsorption. J. Phys. Chem. C 116, 25184–25189 (2012)CrossRefGoogle Scholar
  22. 22.
    A. Omidvar, Dissociation of O 2 molecule on Fe/N x clusters embedded in C60 fullerene, carbon nanotube and graphene. Synth. Met. 234, 38–46 (2017)CrossRefGoogle Scholar
  23. 23.
    A. Hosseinian, S. Ahmadi, P.D.K. Nezhad, K. Didehban, Z. Rahmani, Transition metal (Ti, Cr, Fe, Ni, and Zn) decorated porphyrin-like porous [60]-fullerenes: DFT study. Phys. E 110, 5–9 (2019)CrossRefGoogle Scholar
  24. 24.
    Y. Zou, Y. Li, X. Zhang, B. Wang, H. Yan, Structure and optical properties of boron-doped C60 thin films. Mater. Sci. Eng. B 84, 163–166 (2001)CrossRefGoogle Scholar
  25. 25.
    M Prato (2002) [60] Fullerene chemistry for materials science app[1] T.L. Blank, M.V. Roloff, R.D. Short, S.M. Schuengel, W.E. Ribelin, Inhalation toxicity studies of hydrogen cyanide (HCN) in Sprague-Dawley rats, Toxicology Letters 18 (Suppl. 1) 136.Google Scholar
  26. 26.
    B. Akyildiz, S. Kurtoglu, M. Kondolot, A. Tunc, Cyanide poisoning caused by ingestion of apricot seeds. Ann Trop Paediatr 30, 39–43 (2010)CrossRefGoogle Scholar
  27. 27.
    K.S. Brown, R.R. Robinette, No simple pattern of inheritance in ability to smell solutions of cyanide. Nature 215, 406–411 (1967)ADSCrossRefGoogle Scholar
  28. 28.
    F. Behmagham, Z. Asadi, Y. Jamal Sadeghi, Synthesis, spectroscopic and computational investigation of bis (3-methoxyphenylthio) ethyl) naphthalene. Chem Rev Lett 1, 68–76 (2018)Google Scholar
  29. 29.
    M.T. Baei, M.R. Taghartapeh, A. Soltani, K.H. Amirabadi, N. Gholami, Interaction of pure and metal atom substituted carbon nanocages with CNCl: a DFT study. Russian J. Phys. Chem. B 11, 354–360 (2017)CrossRefGoogle Scholar
  30. 30.
    Seyyed Amir Siadati, Karolina kula, esmaiel babanezhad, the possibility of a two-step oxidation of the surface of C20 fullerene by a single molecule of nitric (V) acid. Chem. Rev. Lett. 2, 2–6 (2019)Google Scholar
  31. 31.
    E. Najafi, F. Behmagham, N. Shaabani, N. Shojaei, Crystal structure and luminescence properties of a new nanostructure lead(II) complex: a precursor for preparation of pure phase nanosized PbO. Chem. Rev. Lett. 2, 13–20 (2019)Google Scholar
  32. 32.
    M. Kia, M. Golzar, K. Mahjoub, A. Soltani, A first-principles study of functionalized clusters and carbon nanotubes or fullerenes with 5-Aminolevulinic acid as vehicles for drug delivery. Superlattices Microstruct 62, 251–259 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    M. Heidari, N. Janjanpour, M. Vakili, S. Daneshmehr, K. Jalalierad, F. Alipour, Study of the ionization potential electron affinity and HOMO-LUMO gaps in the smal fullerene nanostructures. Chem. Rev. Lett. 1, 45–48 (2018)Google Scholar
  34. 34.
    S. Siadati, K. Kula, E. Babanezhad, The possibility of a two-step oxidation of the surface of C20 fullerene by a single molecule of nitric (V) acid. Chem. Rev. Lett. 2, 2–6 (2019)Google Scholar
  35. 35.
    S.F. Rastegar, A.A. Peyghan, N.L. Hadipour, Response of Si-and Al-doped graphenes toward HCN: a computational study. Appl. Surf. Sci. 265, 412–417 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    M. Yang, J. He, X. Hu, C. Yan, Z. Cheng, CuO nanostructures as quartz crystal microbalance sensing layers for detection of trace hydrogen cyanide gas. Environ. Sci. Technol. 45, 6088–6094 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    A. Ahmadi Peyghan, N.L. Hadipour, Z. Bagheri, Effects of Al doping and double-antisite defect on the adsorption of HCN on a BC2N nanotube: density functional theory studies. J. Phys. Chem. C 117, 2427–2432 (2013)CrossRefGoogle Scholar
  38. 38.
    J. Beheshtian, A.A. Peyghan, Z. Bagheri, Sensing behavior of Al-rich AlN nanotube toward hydrogen cyanide. J Mol Model 19, 2197–2203 (2013)CrossRefGoogle Scholar
  39. 39.
    M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, J. Comp. Chem. 14, 1347–1363 (1993)CrossRefGoogle Scholar
  40. 40.
    F. Parandin, J. Jalilian, J. Jalilian, Tuning of electronic and optical properties in ZnX (X= O, S, Se and Te) monolayer: hybrid functional calculations. Chem Rev Lett 2, 76–83 (2019)Google Scholar
  41. 41.
    S. Mohammadi, M. Musavi, F. Abdollahzadeh, S. Babadoust, A. Hosseinian, Application of nanocatalysts in C-Te cross-coupling reactions: an overview. Chem. Rev. Lett. 1, 49–55 (2018)Google Scholar
  42. 42.
    S.A. Siadati, S. Rezazadeh, Switching behavior of an actuator containing germanium, silicon-decorated and normal C20 fullerene. Chem. Rev. Lett. 1, 77–81 (2018)Google Scholar
  43. 43.
    E. Babanezhad, A. Beheshti, The possibility of selective sensing of the straight-chain alcohols (including methanol to n-pentanol) by using the C20 fullerene and C18NB nano cage. Chem. Rev. Lett. 1, 82–88 (2018)Google Scholar
  44. 44.
    S.F. Boys, F. Bernardi, Calculation of small molecular interactions by differences of separate total energies—some procedures with reduced errors. Mol. Phys. 19, 553–561 (1970)ADSCrossRefGoogle Scholar
  45. 45.
    N. O’Boyle, A. Tenderholt, K. Langner, Cclib: a library for package-independent computational chemistry algorithms. J. Comput. Chem. 29, 839–845 (2008)CrossRefGoogle Scholar
  46. 46.
    O. Richardson, Electron emission from metals as a function of temperature. Phys. Rev. 23, 153–157 (1924)ADSCrossRefGoogle Scholar
  47. 47.
    M.T. Baei, B12N12 sodalite like cage as potential sensor for hydrogen cyanide. Comput. Theoretical Chem. 1024, 28–33 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Science, Faculty of Enghelabe Islami, Tehran Branch, Technical and Vocational University (TVU)TehranIran

Personalised recommendations