Advertisement

Applied Physics A

, 125:840 | Cite as

Study of electronic properties on the n-GaN (0001) surface with points defects

  • Lei LiuEmail author
  • Feifei Lu
  • Jian Tian
Article
  • 76 Downloads

Abstract

The influence of defects on the surface of the semiconductor is irreversible. The influence of intrinsic point defects on the electronic properties of n-doped GaN (0001) surface is studied based on the first principles. The results show that, the N interstitial defect (Ni) and Ga Vacancy (VGa) are the more easily formed in the case of Si doping. The defect level generated by an appropriate amount of defects contributes to the transition of electrons, thereby improving the n-type conductivity characteristics. In particular, the Ga vacancy makes the work function drop significantly, which promotes the emission of electrons. However, once the defects inside the material exceed a certain level, any defects will play a counterproductive role. This paper could provide some guidance for the preparation of n-GaN optoelectronic devices.

Notes

Acknowledgements

This work is supported by Qing Lan Project of Jiangsu Province-China (Grant No. 2017-AD41779), the Fundamental Research Funds for the Central Universities-China (Grant No. 30916011206) and the Six Talent Peaks Project in Jiangsu Province-China (Grant No. 2015-XCL-008). Meishan Wang of Ludong University is greatly appreciated for the help of first principle calculations.

Reference:s

  1. 1.
    A. Szyszka, M. Wosko, B. Paszkiewicz, R. Paszkiewicz, Surface electrical characterization of defect related inhomogeneities of AlGaN/GaN/Si heterostructures using scanning capacitance microscopy. Mater. Sci. Semicond. Process 94, 57–63 (2019)CrossRefGoogle Scholar
  2. 2.
    G.S. Qin, X. Zhang, C.S. Lu, C.Y. Fan, M.H. Zhao, Electric field-induced toughening in GaN piezoelectric semiconductor ceramics. Ceram. Int. 45(5), 6589–6593 (2019)CrossRefGoogle Scholar
  3. 3.
    M.H. Gazzah, B. Chouchen, A. Fargi, H. Belmabrouk, Electro-thermal modeling for InxGa1-xN/GaN based quantum well heterostructures. Mater. Sci. Semicond. Process 93, 231–237 (2019)CrossRefGoogle Scholar
  4. 4.
    S.J. Zhou, H.H. Xu, H.P. Hu, C.Q. Gui, S. Liu, High quality GaN buffer layer by isoelectronic doping and its application to 365 nm InGaN/AlGaN ultraviolet light-emitting diodes. Appl Surf Sci 471, 231–278 (2019)ADSCrossRefGoogle Scholar
  5. 5.
    H.X. Li, W.Q. Zhao, Y. Liu, Y. Liang, L. Ma, M. Zhu, C.J. Yi, L. Xiong, Y.H. Gao, High-level-Fe-doped P-type ZnO nanowire array/n-GaN film for ultraviolet-free white light-emitting diodes. Mater. Lett. 239, 45–47 (2019)CrossRefGoogle Scholar
  6. 6.
    S.P. Li, H.Q. Sun, S. Zhang, Y.H. Zhang, X. Wang, X. Zhang, T.Y. Liu, Z.Y. Guo, Surface plasmon resonance on blue GaN-based VCSEL with Al-grating. Opt Laser Technol 113, 177–181 (2019)ADSCrossRefGoogle Scholar
  7. 7.
    V. Sangwan, D. Kapoor, C.M. Tan, C.H. Lin, H.C. Chiu, High-frequency electromagnetic simulation and optimization for GaN-HEMT power amplifier IC. IEEE Trans. Electromagn. Compat. 61(2), 564–571 (2019)CrossRefGoogle Scholar
  8. 8.
    M. Zikova, A. Hospodkova, J. Pangrac, T. Hubacek, J. Oswald, K. Kuldova, F. Hajek, G. Ledoux, C. Dujardin, Influence of Si doping of GaN layers surrounding InGaN quantum wells on structure photoluminescence properties. J. Cryst. Growth 506, 8–13 (2019)ADSCrossRefGoogle Scholar
  9. 9.
    J. Enslin, F. Mehnke, A. Mogilatenko et al., Metamorphic Al05Ga05N: Si on AlN/sapphire for the growth of UVB LEDs. J. Cryst. Growth 464, 185–189 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    P. Lorenz, R. Gutt, M. Himmerlich et al., Angle-resolved photoelectron spectroscopy study of the GaN(0001)-2x2 surface. Phys. Status Solidi C Curr. Topics Solid State Phys. 7, 7–8 (2002)Google Scholar
  11. 11.
    P. Kempisty, P. Strak, K. Sakowski, S. Krukowski, Chemical inactivity of GaN(0001) surface—the role of oxygen adsorption—Ab initio picture. Mater. Sci. Semicond. Process 91, 251–259 (2019)CrossRefGoogle Scholar
  12. 12.
    R.M. Feenstra, J.E. Northrup, J. Neugebauer, Review of structure of bare and adsorbate-covered GaN(0001) surfaces. MRS Internet J. Nitride Semicond. Res. 7(3), 3 (2002)CrossRefGoogle Scholar
  13. 13.
    C. Haller, J.F. Carlin, G. Jacopin, W. Liu, D. Martin, R. Butte, N. Grandjean, GaN surface as the source of non-radiative defects in InGaN/GaN quantum wells. Appl Phys Lett 1113, 111106 (2018)ADSCrossRefGoogle Scholar
  14. 14.
    L.S. Li, J.D. Yu, Z.B. Hao, Influence of point defects on optical properties of GaN-based materials by first principle study. Comput. Mater. Sci. 129, 49–54 (2017)CrossRefGoogle Scholar
  15. 15.
    D.V. Lang, Deep-level transient spectroscopy: a new method to characterize traps in semiconductors. J. Appl. Phys. 45(7), 3023–3032 (1974)ADSCrossRefGoogle Scholar
  16. 16.
    A. Mitonneau, A. Mircea, G.M. Martin, D. Pons, Electron and hole capture cross-sections at deep centers in gallium arsenide. Revue de Physique Appliquee 14(10), 853–861 (1979)CrossRefGoogle Scholar
  17. 17.
    F. Tuomisto, I. Makkonen, Defect identification in semiconductors with positron annihilation: experiment and theory. Rev. Mod. Phys. 85(4), 1583–1631 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    M. Sumiya, K. Yoshimura, K. Ohtsuka, S. Fuke, Dependence of impurity incorporation on the polar direction of GaN film growth. Appl. Phys. Lett. 76(15), 2098–2100 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    M.A. Reshchikov, A. Usikov, H. Helava, Y. Makarov, V. Prozheeva, I. Makkonen, F. Tuomisto, J.H. Leach, K. Udwary, Evaluation of the concentration of point defects in GaN. Sci. Rep. 9, 9297 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    V. Darakchieva, B. Monemar, A. Usui et al., Lattice parameters of bulk GaN fabricated by halide vapor phase epitaxy. J. Cryst. Growth 310(5), 959–965 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    S.P. Bates, G. Kresse, M.J. Gillan, A systematic study of the surface energetics and structure of TiO2(110) by first-principles calculations. Surf. Sci. 385(2–3), 386–394 (1997)ADSCrossRefGoogle Scholar
  22. 22.
    C.G. Van de Walle, J. Neugebauer, First-principles calculations for defects and impurities: applications to III-nitrides. J Appl Phys 95, 3851 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    Q. Sun, A. Selloni, T.H. Myers, W.A. Doolittle, Oxygen adsorption and incorporation at irradiated GaN (0001) and GaN (0001¯) surfaces: first-principles density-functional calculations. Phys. Rev. B 74, 165317 (2006)CrossRefGoogle Scholar
  24. 24.
    C.X. Xia, Y.T. Peng, S.Y. Wei, Y. Jia, The feasibility of tunable p-type Mg doping in a GaN monolayer nanosheet. Acta Mater 61, 7720–7725 (2013)CrossRefGoogle Scholar
  25. 25.
    74CRC Handbook of Chemistry and Physics, 73rd Ed., edited by David R. Lide (CRC Press, Boca Raton, 1992), pp 5–18.Google Scholar
  26. 26.
    M.D. Segall, P.J.D. Lindan, M.J. Probert et al., First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 14(11), 2717–2744 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    P.M. Dinh, J. Messud, P.G. Reinhard et al., Self-interaction correction in a simple model. Phys. Lett. A 372(34), 5598–5602 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    M.Z. Yang, B.K. Chang, M.S. Wang, Atomic geometry and electronic structure of Al025Ga075N (0001) surfaces covered with different coverages of cesium: a first-principle research. Appl. Surf. Sci. 326, 251–256 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    H.X. Zhao, Z.Y. Guo, K. Zeng et al., Electronic structure and the optical properties of GaN (0001) surface from first-principles study. Proc. SPIE Int. Soc. Opt. Eng. 7518, 7518B (7518B)ADSGoogle Scholar
  30. 30.
    J.L. Lyons, C.G. Van de Walle, Computationally predicted energies and properties of defects in GaN. NPJ Comput. Mater. 3, 12 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    P. Boguslawski, E. Briggs, J. Bernholc, Native defects in gallium nitride. Phys. Rev. B 51(23), 17255–17258 (1995)ADSCrossRefGoogle Scholar
  32. 32.
    R. Gonzalez-Hernandez, A. Gonzalez-Garcia, D. Barragan-Yani, W. Lopez-Perez, A comparative DFT study of the structural and electronic properties of nonpolar GaN surfaces. Appl. Surf. Sci. 314, 794–799 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    W.W. Lin, J. Huang, D.G. Chen, Z. Lin, W. Li, J.K. Huang, F. Huang, Synthesis and characterization of nanocrystalline GaN by ammonothermal method using CsNH2 as mineralizer. J. Nanosci. Nanotechnol. 10(9), 5741–5745 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Optoelectronic Technology, School of Electronic and Optical EngineeringNanjing University of Science and TechnologyNanjingPeople’s Republic of China

Personalised recommendations