Applied Physics A

, 125:843 | Cite as

Footprint of plexcitonic states in low-power green–blue plasmonic random laser

  • S. F. Haddawi
  • M. Mirahmadi
  • H. Mbarak
  • A. K. Kodeary
  • M. Ghasemi
  • S. M. HamidiEmail author


Green–blue plasmonic random laser is attained by two-dimensional plexcitonic structure. The main gain plexcitonic media contained two-dimensional periodic arrays of gold nanowires which is covered by dye layer. Due to the change in the strength of exciton and plasmon coupling in these plexcitonic gain structures, different close loop, and thus random lasing must be takes place. For this purpose, we fabricate six samples with different plexcitonic power and pumped fabricated two-dimensional nanostructures by green nanosecond pulsed laser. Our results show efficient coherent random lasing due to the plexcitonic nanostructure in the blue, because two-photon absorption and also green part of the visible spectral region considering its applicability in the design and fabrication of compact and miniaturized random laser sources.



  1. 1.
    D.G. Baranov, M. Wersäll, J. Cuadra, T.J. Antosiewicz, T. Shegai, Novel nanostructures and materials for strong light-matter interactions. ACS Photonics 5(1), 24–42 (2017)CrossRefGoogle Scholar
  2. 2.
    En Cao, W. Lin, M. Sun, W. Liang, Y. Song, Exciton-plasmon coupling interactions: from principle to applications. Nanophotonics 7(1), 145–167 (2018)CrossRefGoogle Scholar
  3. 3.
    D.J. Bergman, M.I. Stockman, Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90(2), 027402-1–027402-4 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    T.K. Hakala, H.T. Rekola, A.I. Väkeväinen, J.-P. Martikainen, M. Nečada, A.J. Moilanen, P. Törmä, Lasing in dark and bright modes of a finite-sized plasmonic lattice. Nat. Commun. 8, 13687 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    J.B. Khurgin, Ultimate limit of field confinement by surface plasmon polaritons. Faraday Discuss 178, 109–122 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    V.G. Kravets, A.V. Kabashin, W.L. Barnes, A.N. Grigorenko, Plasmonic surface lattice resonances: a review of properties and applications. Chem Rev 118(12), 5912–5951 (2018)CrossRefGoogle Scholar
  7. 7.
    W. Zhou, M. Dridi, J.Y. Suh, C.H. Kim, D.T. Co, M.R. Wasielewski, G.C. Schatz, T.W. Odom, Lasing action in strongly coupled plasmonic nanocavity arrays. Nat Nanotechnol 8(7), 506–511 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    D. Van Tua, B. Scharf, I. Žutić, H. Dery, Marrying excitons and plasmons in monolayer transition-metal dichalcogenides. Phys. Rev. X 7(4), 041040-1–041040-19 (2017)Google Scholar
  9. 9.
    G. Beane, B.S. Brown, P. Johns, T. Devkota, G.V. Hartland, Strong exciton-plasmon coupling in silver nanowire nanocavities. J. Phys. Chem. Lett. 9(7), 1676–1681 (2018)CrossRefGoogle Scholar
  10. 10.
    X. Han, K. Wang, X. Xing, M. Wang, Lu Peixiang, Rabi splitting in a plasmonic nanocavity coupled to a WS2 monolayer at room temperature. ACS Photonics 5(10), 3970–3976 (2018)CrossRefGoogle Scholar
  11. 11.
    R.R. Gutha, S.M. Sadeghi, A. Hatef, C. Sharp, Y. Lin, Ultrahigh refractive index sensitivity via lattice-induced meta-dipole modes in flat metallic nanoantenna arrays. Appl Phys Lett 112(22), 223102 (2018)ADSCrossRefGoogle Scholar
  12. 12.
    S. Li, Li Wang, T. Zhai, J. Tong, L. Niu, F. Tong, F. Cao, H. Liu, X. Zhang, A dual-wavelength polymer random laser with the step-type cavity. Org Electron 57, 323–326 (2018)CrossRefGoogle Scholar
  13. 13.
    S. Kedia, S. Sinha, Random lasing from dyed polystyrene spheres in disordered environments. J. Laser Appl. 30(3), 032022 (2018)ADSCrossRefGoogle Scholar
  14. 14.
    Z. Wang, X. Meng, A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Nanolasers enabled by metallic nanoparticles: from spasers to random lasers. Laser Photonics Rev 11(6), 1700212 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    M. Dridi, G.C. Schatz, Lasing action in periodic arrays of nanoparticles. J. Opt. Soc. Am. B 32(5), 818 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    M. Liu, HSh Quah, Sh Wen, Y. Li, J.J. Vittal, W. Ji, Multiphoton absorption and two-photon-pumped random lasing in crystallites of a coordination polymer. J. Phys. Chem 122, 777–781 (2018)Google Scholar
  17. 17.
    S.F. Haddawi, H.R. Humud, S.M. Hamidi, Signature of plasmonic nanoparticles in multi-wavelength low power random lasing. Opt Laser Technol 121(2020), 105770 (2019)Google Scholar
  18. 18.
    N. Asgari, S.M. Hamidi, Fantastic exciton-plasmon coupling in dye-doped poly (vinyl pyrrolidone)/gold one-dimensional nano-grating. Superlattices Microstruct 123, 358–373 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    N. Asgari, S.M. Hamidi, Exciton-plasmon coupling in two-dimensional plexcitonic nano grating. Opt Mater 81, 45–54 (2018)ADSCrossRefGoogle Scholar
  20. 20.
    A.D. Humphrey, W.L. Barnes, Plasmonic surface lattice resonances on arrays of different lattice symmetry. Phys Rev B 90, 075404 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    A. Nag, D. Goswai, A solvent effect on two photon absorption and florescence or rhodamine dyes, J. Photo chem 206, 188–197 (2009)Google Scholar
  22. 22.
    R. Ahmad, M.S. Rafique, A. Ajami, S. Bashir, W. Husinsky, S. Iqbal, Influence of laser and material parameters on two photon absorption in Rhodamine B and Rhodamine 6G solutions in MeOH. Optik 183, 835–841 (2019)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Magneto-Plasmonic Lab, Laser and Plasma Research InstituteShahid Beheshti UniversityTehranIran
  2. 2.Department of Laser Physics, College of Science for WomanUniversity of BabylonBabylonIraq
  3. 3.Department of Physics, College of ScienceUniversity of BaghdadBaghdadIraq

Personalised recommendations