Advertisement

Applied Physics A

, 125:834 | Cite as

Double doping synergy to improve structural, morphological, optical, and electrical properties of solution-based Cd and M (M: Pb, Sn, Bi) double doped nanocrystalline copper oxide films

  • Bunyamin SahinEmail author
  • Rasit Aydin
Article
  • 45 Downloads

Abstract

In this study, nanostructured CuO, Cd0.01Cu0.99O and Cu0.98Cd0.01M0.01O (M: Pb, Bi, Sn) films were synthesized using the successive ionic layer adsorption and reaction technique. The effects of Cd-doping, Sn, Pb, and Bi double doping on the structural, morphological, optical, and electrical properties were systematically investigated via X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–Vis spectroscopy, and current–voltage (IV) measurements, respectively. XRD results show that the peak intensity, crystallite size, and texture coefficient of the films changed intensely with double doping. SEM images reveal that the surface morphology of the nanostructures changed with the kind of dopant materials due to the differences in ionic radius. Energy dispersive X-ray spectroscopy studies confirmed the presence of Cd2+, Sn4+, Pb2+, and Bi+5 in the doped films. The estimated average optical band gap energies of the CuO samples varied from 1.366 to 1.480 eV with double doping. The lowest average electrical resistivity of 1.21 × 106 Ω cm was found for the Bi0.01 Cd0.01Cu0.98O sample.

Notes

Acknowledgements

This research has been supported by the Scientific Research Projects Unit of Selcuk University (Project No: 17703028) and Scientific Research Commission of Mustafa Kemal University (Project No.: 11500).

Compliance with ethical standards

Conflict of interest

The authors declared that they have no conflicts of interest in this work.

References

  1. 1.
    M. Kang, S.W. Kim, H.Y. Park, J. Phys. Chem. Solids 123, 266–270 (2018)ADSCrossRefGoogle Scholar
  2. 2.
    B. Sahin, T. Kaya, Microelectron. Eng. 164, 88–92 (2016)CrossRefGoogle Scholar
  3. 3.
    T.A.N. Peiris, J.S. Sagu, Y.H. Yusof, K.G.U. Wijayantha, Thin Solid Films 590, 293–298 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    R. Vittal, K.-C. Ho, Renew. Sustain. Energy Rev. 70, 920–935 (2017)CrossRefGoogle Scholar
  5. 5.
    M. Dou, M. Hou, D. Liang, W. Lu, Z. Shao, B. Yi, Electrochim. Acta 92, 468–473 (2013)CrossRefGoogle Scholar
  6. 6.
    N. Joshi, L. F. da Silva, H.S. Jadhav, F.M. Shimizu, P.H. Suman, J.-C. M’Peko, M.O. Orlandi, J.G. Seo, V.R. Mastelaro, O.N. Oliveira Jr: Sens. Actuators B 257, 906–915 (2018)Google Scholar
  7. 7.
    T. Jan, J. Iqbal, U. Farooq, A. Gul, R. Abbasi, I. Ahmad, M. Malik, Ceram. Int. 41, 13074–13079 (2015)CrossRefGoogle Scholar
  8. 8.
    A. Tombak, M. Benhaliliba, Y.S. Ocak, T. Kiliçoglu, Results Phys. 5, 314–321 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    K. Padrón, E.J. Juárez-Pérez, F. Forcade, R. Snyders, X. Noirfalise, C. Lazaa, J. Jiménez, E. Vigil, Thin Solid Films 660, 386–390 (2018)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Akaltun, Thin Solid Films 594, 30–34 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    B. Sahin, T. Kaya, Appl Surf Sci 362, 532–537 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    S.M. Abbas, S.T. Hussain, S. Ali, F. Abbas, N. Ahmad, N. Ali, Y. Khan, J. Alloys Compd. 574, 221–226 (2013)CrossRefGoogle Scholar
  13. 13.
    W. Maeng, S.H. Lee, J.D. Kwon, J. Park, J.S. Park, Ceram. Int. 42, 5517–5522 (2016)CrossRefGoogle Scholar
  14. 14.
    A.M. El Sayed, M. Shaban, Spectrochim. Acta Part A 149, 638–646 (2015)CrossRefGoogle Scholar
  15. 15.
    Y.-Y. Yu, W.-C. Chien, Y.-J. Wang, Thin Solid Films 618, 134–140 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    P. Chand, A. Gaur, A. Kumar, U.K. Gaur, Appl. Surf. Sci. 307, 280–286 (2014)CrossRefGoogle Scholar
  17. 17.
    M. Umadevi, A.J. Christy, Spectrochim. Acta Part A 109, 133–137 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    A.D. Khalaji, K. Jafari, S.M. Rad, J. Nan. Str. 2, 505 (2013)Google Scholar
  19. 19.
    C.Y. Chiang, K. Aroh, S.H. Ehrman, Int. J. Hydrog. Energy 37, 4871–4879 (2012)CrossRefGoogle Scholar
  20. 20.
    Y. Akaltun, M. Aslan, T. Yetim, T. Çayır, A. Çelik, Surf. Coat. Technol. 292, 121–131 (2016)CrossRefGoogle Scholar
  21. 21.
    K. Ravichandran, P.V. Rajkumar, B. Sakthivel, K. Swaminathan, L. Chinnappa, Ceram. Int. 40, 12375–12382 (2014)CrossRefGoogle Scholar
  22. 22.
    R. Aydin, B. Şahin, J. Alloys Compd. 705, 9–13 (2017)CrossRefGoogle Scholar
  23. 23.
    E. Turan, M. Zor, M. Kul, A.S. Aybek, T. Taskopru, Philos. Mag. 92, 1716–1726 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    C. Pandurangappa, B.N. Lakshminarasappa, Philos. Mag. 91, 4486–4494 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Y.-H. Choi, D.-H. Kim, S.-H. Hong, Sens. Actuators B 243, 262–270 (2017)Google Scholar
  26. 26.
    R.-C. Wang, S.-N. Lin, J.-Y. Liu, J. Alloys Compd. 696, 79–85 (2017)CrossRefGoogle Scholar
  27. 27.
    A. Yildiz, S. Horzum, N. Serin, T. Serin, Appl. Surf. Sci. 318, 105–107 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    M.B. Amor, A. Boukhachem, A. Labidi, K. Boubaker, M. Amlouk, J. Alloys Compd. 693, 490–499 (2017)CrossRefGoogle Scholar
  29. 29.
    C. Tan, D. Sun, D. Xu, X. Tian, Y. Huang, Ceram. Int. 42, 10997–11002 (2016)CrossRefGoogle Scholar
  30. 30.
    X. Zhang, H. Yang: Sens. Actuators B 173, 127–132 (2012)Google Scholar
  31. 31.
    A. Ranjitha, N. Muthukumarasamy, M. Thambidurai, Dhayalan Velauthapillai, A. M. Kumar, Z.M. Gasem: Superlattices Microstruct. 74, 114–122 (2014)Google Scholar
  32. 32.
    N. Manjula, M. Suganya, D. Prabha, S. Balamurugan, J. Srivind, V.S. Nagarethinam, A.R. Balu, J. Mater. Sci: Mater. Electron. 28, 7615–7621 (2017)Google Scholar
  33. 33.
    K. Ravichandran, R. Mohan, B. Sakthivel, S. Varadharajaperumal, P. Devendran, T. Alagesan, K. Pandian, Appl. Surf. Sci. 321, 310–317 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    H. Khmissi, A.M. El Sayed, M. Shaban, J. Mater. Sci. 51, 5924–5938 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    A.I. Ramos-Guerra, J. Guzmán-Mendoza, M. García-Hipólito, O. Alvarez-Fregoso, C. Falcony, Ceram. Int. 41, 11279–11286 (2015)CrossRefGoogle Scholar
  36. 36.
    M. Kaiser, J. Alloys Compd. 719, 446–454 (2017)CrossRefGoogle Scholar
  37. 37.
    A. Yu, Y. Ma, A. Chen, Y. Li, Y. Zhou, Z. Wang, J. Zhang, L. Chu, J. Yang, X. Li, Vacuum 141, 243–248 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    R.D. Shannon, Acta Crystallogr. A 32, 751–767 (1976)ADSCrossRefGoogle Scholar
  39. 39.
    P. Velusamy, R.R. Babu, K. Ramamurthi, E. Elangovan, J. Viegas, J. Alloy. Compd. 708, 804–812 (2017)CrossRefGoogle Scholar
  40. 40.
    E. Gürbüz, B. Şahin, Appl Phys A 124(795), 1–9 (2018)Google Scholar
  41. 41.
    G. Selvan, M.P. Abubacker, A.R. Balu, J. Mater. Sci: Mater. Electron. 28, 2335–2342 (2017)Google Scholar
  42. 42.
    F.X. Cheng, J.T. Jia, Z.G. Xu, B. Zhou, C.S. Liao, C.H. Yan, J. Appl. Phys. 86, 2727 (1999)ADSCrossRefGoogle Scholar
  43. 43.
    P. Kumarn, P. Sharma, A.G. Joshi, R. Shrivastav, S. Dass, V.R. Satsangi, J. Electrochem. Soc. 159, H685–H691 (2012)CrossRefGoogle Scholar
  44. 44.
    C. Moditswe, C.M. Muiva, P. Luhanga, A. Juma, Ceram. Int. 43, 5121–5126 (2017)CrossRefGoogle Scholar
  45. 45.
    J. Wu, K.S. Hui, K.N. Hui, L. Li, H.-H. Chun, Y.R. Cho, J. Mater. Sci: Mater. Electron. 27, 1719–1724 (2016)Google Scholar
  46. 46.
    A. Bouhdjer, A. Attaf, H. Saidi, Y. Benkhetta, M.S. Aida, I. Bouhaf, A. Rhil, Opt. Int. J. Light Electron. Opt. 127, 6329–6333 (2016)Google Scholar
  47. 47.
    A. Agrawal, T.A. Dar, P. Sen, J. Nano- Electron. Phys. 5, 02025 (2013)Google Scholar
  48. 48.
    K.O. Ighodalo, D. Obi, A. Agbogu, B.N. Ezealigo, A.C. Nwanya, S.L. Mammah, R. Bucher, M. Maaza, F.I. Ezem, Mater. Res. Bull. 94, 528–536 (2017)CrossRefGoogle Scholar
  49. 49.
    R.C. Rodriguez, A.I. Oliva, V. Sosa, F.C. Briones, J.L. Pena, Appl. Surf. Sci. 161, 340–346 (2000)ADSCrossRefGoogle Scholar
  50. 50.
    S.M.H. Al-Jawad, Mater. Sci. Semicond. Process. 67, 75–83 (2017)CrossRefGoogle Scholar
  51. 51.
    L. Sponza, J. Goniakowski, C. Noguera, Phys. Rev. B 93, 195435 (2016)ADSCrossRefGoogle Scholar
  52. 52.
    R. Aydin, B. Şahin, Ceram. Int. 43, 9285–9290 (2017)CrossRefGoogle Scholar
  53. 53.
    Y. Akaltun, T. Çayır, J. Alloys Compd. 625, 144–148 (2015)CrossRefGoogle Scholar
  54. 54.
    A. Mukherjee, B. Satpati, S.R. Bhattacharyya, R. Ghosh, P. Mitra, Physica E 65, 51–55 (2015)ADSCrossRefGoogle Scholar
  55. 55.
    R.A. Mereu, A. Mesaros, M. Vasilescu, M. Popa, M.S. Gabor, L. Ciontea, T. Petrisor, Ceram. Int. 39, 5535–5543 (2013)CrossRefGoogle Scholar
  56. 56.
    R.K. Gupta, Z. Serbetçi, F. Yakuphanoğlu, J. Alloys Compd. 515, 96–100 (2012)CrossRefGoogle Scholar
  57. 57.
    A.D. Trolio, E.M. Bauer, G. Scavia, C. Veroli, J. Appl. Phys. 105, 113109 (2009)ADSCrossRefGoogle Scholar
  58. 58.
    I.B. Miled, M. Jlassi, I. Sta, M. Dhaouadi, M. Hajji, G. Mousdis, M. Kompitsas, H. Ezzaouia: J. Mater. Sci.- Mater. Electron. 29, 11286–11295 (2018)Google Scholar
  59. 59.
    L.L. Pan, G.Y. Li, J.S. Lian, Appl. Surf. Sci. 274, 365–370 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Nanostructured Materials and Applications, Faculty of Arts and SciencesMustafa Kemal UniversityHatayTurkey
  2. 2.Department of Physics, Faculty of SciencesSelcuk UniversityKonyaTurkey

Personalised recommendations