Advertisement

Applied Physics A

, 125:822 | Cite as

Hydrothermal processed heterogeneous MoS2 assisted charge transport in dye sensitized solar cells

  • Gopika Gopakumar
  • Shantikumar V. Nair
  • Mariyappan ShanmugamEmail author
Article
  • 25 Downloads

Abstract

Photovoltaic performance in dye sensitized solar cells (DSSCs) was improved by incorporating hydrothermal processed molybdenum disulfide (MoS2) into the bulk of titanium dioxide (TiO2) nanoparticle film. MoS2 exhibits a heterogeneous morphology comprising randomly distributed clustered nanoparticles and one dimensional nano-needles. The heterogeneous MoS2 was examined by X-ray photoelectron spectroscopy to study Mo 3d and S 2p peaks. Transmission electron microscopic studies on the heterogeneous MoS2 assert the presence of multilayers which further confirmed by UV–visible optical absorption spectroscopy showed absence of band-edge excitonic peaks at 612 nm and 674 nm. DSSCs show 17% enhancement in performance for 0.09 wt% of heterogeneous MoS2 incorporated TiO2 nanoparticle film compared to reference DSSC fabricated using only TiO2. Further changes in performance was examined by varying the concentration of MoS2 in TiO2 and observed that there is an optimum value to facilitate photo-generated charge transport kinetics in TiO2. The heterogeneous nature of MoS2 effectively acquired photo-electrons from TiO2 due to the presence of conduction band edge few meV below than that of in TiO2 and helps improving the performance.

Notes

Acknowledgements

The authors would like to thank Mr. Sajin, Mr. Sarath and Ms. Selvi N R for their assistance in various characterizations.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    E. Ghadiri, N. Taghavinia, S.M. Zakeeruddin, M. Gratzel, J.E. Moser, Nano Lett. 10, 1632–1638 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    M.S. Ahmad, A.K. Pandey, N.A. Rahim, Renew. Sustain. Energy Rev. 77, 89–108 (2017)CrossRefGoogle Scholar
  3. 3.
    F. Sauvage, F. Di Fonzo, A. Li Bassi, C.S. Casari, V. Russo, G. Divitini, C. Ducati, C.E. Bottani, P. Comte, M. Graetzel, Nano Lett. 10, 2562–2567 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    R.T. Ako, P. Ekanayake, D.J. Young, J. Hobley, V. Chellappan, A.L. Tan, S. Gorelik, G.S. Subramanian, C.M. Lim, Appl. Surf. Sci. 351, 950–961 (2015)CrossRefGoogle Scholar
  5. 5.
    F.J. Knorr, D. Zhang, J.L. McHale, Langmuir 23, 8686–8690 (2007)CrossRefGoogle Scholar
  6. 6.
    V. Dhas, S. Muduli, S. Agarkar, A. Rana, B. Hannoyer, R. Banerjee, S. Ogale, Sol. Energy 85, 1213–1219 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    Z.S. Wang, H. Kawauchi, T. Kashima, H. Arakawa, Coordination. Chem. Rev. 248, 1381–1389 (2004)Google Scholar
  8. 8.
    S. Agarwala, M. Kevin, A.S.W. Wong, C.K.N. Peh, V. Thavasi, G.W. Ho, ACS Appl. Mater. Interfaces 2, 1844–1850 (2010)CrossRefGoogle Scholar
  9. 9.
    D. Chen, F. Huang, Y.B. Cheng, R.A. Caruso, Adv. Mater. 21, 2206–2210 (2009)CrossRefGoogle Scholar
  10. 10.
    Y. Lee, J. Chae, M. Kang, J. Ind. Eng. Chem. 16, 609–614 (2010)CrossRefGoogle Scholar
  11. 11.
    Y. Qiu, W. Chen, S. Yang, Angew. Chem. Int. Ed. 49, 3675–3679 (2010)CrossRefGoogle Scholar
  12. 12.
    S.H. Kang, J.Y. Kim, Y. Kim, H.S. Kim, Y.E. Sung, J. Phys. Chem. C 111, 9614–9623 (2007)CrossRefGoogle Scholar
  13. 13.
    K. Zhu, N. Kopidakis, N.R. Neale, J. van de Lagemaat, A.J. Frank, J. Phys. Chem. B 110, 25174–25180 (2006)CrossRefGoogle Scholar
  14. 14.
    R. Li, J. Liu, N. Cai, M. Zhang, P. Wang, J. Phys. Chem. B 114, 4461–4464 (2010)CrossRefGoogle Scholar
  15. 15.
    J. Bisquert, A. Zaban, P. Salvador, J. Phys. Chem. B 106, 8774–8782 (2002)CrossRefGoogle Scholar
  16. 16.
    T.C. Li, M.S. Góes, F. Fabregat-Santiago, J. Bisquert, P.R. Bueno, C. Prasittichai, J.T. Hupp, T.J. Marks, J. Phys. Chem. C 113, 18385–18390 (2009)CrossRefGoogle Scholar
  17. 17.
    K. Murakoshi, G. Kano, Y. Wada, S. Yanagida, H. Miyazaki, M. Matsumoto, S. Murasawa, J. Electroanal. Chem. 396, 27–34 (1995)CrossRefGoogle Scholar
  18. 18.
    P. Wang, L. Wang, B. Ma, B. li, Y. Qiu, J. Phys. Chem. B 110, 14406–14409 (2006)CrossRefGoogle Scholar
  19. 19.
    N. Kopidakis, N.R. Neale, A.J. Frank, J. Phys. Chem. B 110, 12485–12489 (2006)CrossRefGoogle Scholar
  20. 20.
    M. Shanmugam, M.F. Baroughi, D. Galipeau, Thin Solid Films 518, 2678–2682 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    B.A. Gregg, F. Pichot, S. Ferrere, C.L. Fields, J. Phys. Chem. C 105, 1422–1429 (2001)CrossRefGoogle Scholar
  22. 22.
    C. Prasittichai, J.T. Hupp, J. Phys. Chem. Lett. 1, 1611–1615 (2010)CrossRefGoogle Scholar
  23. 23.
    U. Mehmood, I.A. Hussein, K. Harrabi, M.B. Mekki, S. Ahmed, N. Tabet, Sol. Energy Mater Solar Cells 140, 174–179 (2015)CrossRefGoogle Scholar
  24. 24.
    T.J. Macdonald, D.D. Tune, M.R. Dewi, C.T. Gibson, J.G. Shapter, T. Nann, Chemsuschem 8(20), 3396–3400 (2015)CrossRefGoogle Scholar
  25. 25.
    S.A. Kazmi, S. Hameed, A.S. Ahmed, M. Arshad, Azam A. J. Alloy. Compd. 691, 659–665 (2017)CrossRefGoogle Scholar
  26. 26.
    Z. He, H. Phan, J. Liu, T.Q. Nguyen, T.T.Y. Tan, Adv. Mater. 25(47), 6900–6904 (2013)CrossRefGoogle Scholar
  27. 27.
    J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, Science 331, 568–571 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    R. Ganatra, Q. Zhang, ACS Nano 8, 4074–4099 (2014)CrossRefGoogle Scholar
  29. 29.
    V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M. Strano, J.N. Coleman, Science 340, 1226419 (2013)CrossRefGoogle Scholar
  30. 30.
    M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, H. Zhang, Nature Chem. 5, 263 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    D. Akinwande, C.J. Brennan, J.S. Bunch, P. Egberts, J.R. Felts, H. Gao, R. Huang, J.S. Kim, T. Li, Y. Li, K.M. Liechti, Extreme Mech. Lett. 13, 42–77 (2017)CrossRefGoogle Scholar
  32. 32.
    K.S. Novoselov, A. Mishchenko, A. Carvalho, A.C. Neto, Science 353, 9439 (2016)CrossRefGoogle Scholar
  33. 33.
    H. Li, J. Wu, Z. Yin, H. Zhang, Acc. Chem. Res. 47, 1067–1075 (2014)CrossRefGoogle Scholar
  34. 34.
    Q. He, Z. Zeng, Z. Yin, H. Li, S. Wu, X. Huang, H. Zhang, Small 8, 2994–2999 (2012)CrossRefGoogle Scholar
  35. 35.
    B. Radisavljevic, A. Radenovic, J. Brivio, I.V. Giacometti, A. Kis, Nat. Nanotech. 6, 147 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    Y.C. Lin, W. Zhang, J.K. Huang, K.K. Liu, Y.H. Lee, C.T. Liang, C.W. Chu, L.J. Li, Nanoscale 4, 6637–6641 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    K.K. Liu, W. Zhang, Y.H. Lee, Y.C. Lin, M.T. Chang, C.Y. Su, C.S. Chang, H. Li, Y. Shi, H. Zhang, C.S. Lai, Nano Lett. 12, 1538–1544 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    S.S. Chou, B. Kaehr, J. Kim, B.M. Foley, M. De, P.E. Hopkins, J. Huang, C.J. Brinker, V.P. Dravid, Angew. Chem. 125, 4254–4258 (2013)CrossRefGoogle Scholar
  39. 39.
    M.L. Tsai, S.H. Su, J.K. Chang, D.S. Tsai, C.H. Chen, C.I. Wu, L.J. Li, L.J. Chen, J.H. He, ACS Nano 8, 8317–8322 (2014)CrossRefGoogle Scholar
  40. 40.
    H. Menon, G. Gopakumar, V. Sankaranarayanan Nair, S.V. Nair, M. Shanmugam, ChemistrySelect 3, 5801–5807 (2018)CrossRefGoogle Scholar
  41. 41.
    P. Joensen, E.D. Crozier, N. Alberding, R.F. Frindt, J Phys C Solid State Phys 20(26), 4043 (1987)ADSCrossRefGoogle Scholar
  42. 42.
    A. Molina-Sánchez, D. Sangalli, K. Hummer, A. Marini, L. Wirtz, Phys. Rev B 88(4), 045412 (2013)ADSCrossRefGoogle Scholar
  43. 43.
    F. Zhao, Y. Rong, J. Wan, Z. Hu, Z. Peng, B. Wang, Nanotechnol 29(10), 105403 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Amrita Center for Nanosciences and Molecular MedicineAmrita Vishwa VidyapeethamKochiIndia

Personalised recommendations