Applied Physics A

, 125:829 | Cite as

Three-dimensional ZnO nanorods growth on ZnO nanorods seed layer for high responsivity UV photodetector

  • S. M. A. Rastialhosseini
  • A. KhayatianEmail author
  • R. Shariatzadeh
  • M. Almasi Kashi


Three-dimensional ZnO nanorods (NRs) were synthesized by hydrothermal method on ZnO seed layer including horizontal ZnO NRs. The ZnO seed layers consist of different values of NRs were synthesized by spin-coating. The different seed layers and ZnO nanorods arrays were characterized using field emission scanning electron microscopy, X-ray diffraction. Horizontally dispersed NRs on the substrate formed an overlapping junction structure into seed layer as ZnO NRs network. NRs grown on the seed layer including horizontal NRs were oriented in different directions to form three-dimensional ZnO NRs in flower shape. The electrical resistance of sensors based NRs array decreased dramatically with increasing NRs added to ZnO seed layer. Results show that ultraviolet photocurrent increased from 1.7 to 23 μA which is suitable for fabrication of practical photodevices.



Authors would like to thank the University of Kashan for supporting this work by Grant No. (159023/55).


  1. 1.
    R. Azimirad, A. Khayatian, S. Safa, M.A. Kashi, Enhancing photoresponsivity of ultra violet photodetectors based on Fe doped ZnO/ZnO shell/core nanorods. J. Alloys Compd. 615, 227–233 (2014)CrossRefGoogle Scholar
  2. 2.
    E. Rokhsat, O. Akhavan, Improving the photocatalytic activity of graphene oxide/ZnO nanorod films by UV irradiation. Appl. Surf. Sci. 371, 590–595 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Bu, Z. Chen, W. Li, B. Hou, Highly efficient photocatalytic performance of graphene–ZnO quasi-shell–core composite material. ACS Appl. Mater. Interfaces 5(23), 12361–12368 (2013)CrossRefGoogle Scholar
  4. 4.
    M.N. Rezaie, N. Manavizadeh, F.D. Nayeri, M.M. Bidgoli, E. Nadimi, F.A. Boroumand, Effect of seed layers on low-temperature, chemical bath deposited ZnO nanorods-based near UV-OLED performance. Ceram. Int. 44(5), 4937–4945 (2018)CrossRefGoogle Scholar
  5. 5.
    Y. Bu, Z. Chen, W. Li, J. Yu, High-efficiency photoelectrochemical properties by a highly crystalline CdS-sensitized ZnO nanorod array. ACS Appl. Mater. Interfaces 5(11), 5097–5104 (2013)CrossRefGoogle Scholar
  6. 6.
    M. Sun, Z. Chen, X. Jiang, C. Feng, R. Zeng, Optimized preparation of Co-Pi decorated g-C3N4@ ZnO shell-core nanorod array for its improved photoelectrochemical performance and stability. J. Alloys Compd. 780, 540–551 (2019)CrossRefGoogle Scholar
  7. 7.
    M.M. Sivalingam, K. Balasubramanian, Morphological tuned preparation of zinc oxide: reduced graphene oxide composites for non-enzymatic fluorescence glucose sensing and enhanced photocatalysis. Appl. Phys. A 122(7), 694 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    S. Goel, N. Sinha, H. Yadav, A.J. Joseph, B. Kumar, Experimental investigation on the structural, dielectric, ferroelectric and piezoelectric properties of La doped ZnO nanoparticles and their application in dye-sensitized solar cells. Physica E 91, 72–81 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    M. Sun, Z. Chen, Y. Bu, J. Yu, B. Hou, Effect of ZnO on the corrosion of zinc, Q235 carbon steel and 304 stainless steel under white light illumination. Corros. Sci. 82, 77–84 (2014)CrossRefGoogle Scholar
  10. 10.
    M. Novotný, E. Marešová, P. Fitl, J. Vlček, M. Bergmann, M. Vondráček, R. Yatskiv, J. Bulíř, P. Hubík, P. Hruška, The properties of samarium-doped zinc oxide/phthalocyanine structure for optoelectronics prepared by pulsed laser deposition and organic molecular evaporation. Appl. Phys. A 122(3), 225 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    K. Niranjan, S. Dutta, S. Varghese, A.K. Ray, H.C. Barshilia, Role of defects in one-step synthesis of Cu-doped ZnO nano-coatings by electrodeposition method with enhanced magnetic and electrical properties. Appl. Phys. A 123(4), 250 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    S.N.Q.A.A. Aziz, S.-Y. Pung, Z. Lockman, Growth of Fe-doped ZnO nanorods using aerosol-assisted chemical vapour deposition via in situ doping. Appl. Phys. A 116(4), 1801–1811 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    R. Shakernejad, A. Khayatian, A. Ramazani, S. Akhtarianfar, M.A. Kashi, Analysis of structural and UV photodetecting properties of ZnO nanorod arrays grown on rotating substrate. J. Sol-Gel Sci. Technol. 85(2), 458–469 (2018)CrossRefGoogle Scholar
  14. 14.
    W.I. Park, C.H. Lee, J.H. Chae, D.H. Lee, G.C. Yi, Ultrafine ZnO nanowire electronic device arrays fabricated by selective metal–organic chemical vapor deposition. Small 5(2), 181–184 (2009)CrossRefGoogle Scholar
  15. 15.
    M. Mehrabian, R. Azimirad, K. Mirabbaszadeh, H. Afarideh, M. Davoudian, UV detecting properties of hydrothermal synthesized ZnO nanorods. Physica E 43(6), 1141–1145 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    A. Zainelabdin, S. Zaman, G. Amin, O. Nur, M. Willander, Optical and current transport properties of CuO/ZnO nanocoral p–n heterostructure hydrothermally synthesized at low temperature. Appl. Phys. A 108(4), 921–928 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    C. Shin, J. Heo, J. Park, T. Lee, H. Ryu, B. Shin, W. Lee, H.-K. Kim, The effect of pH on ZnO hydrothermal growth on PES flexible substrates. Physica E 43(1), 54–57 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    J.-H. Wu, S.-Y. Liu, S. Li, Y-l Jiang, G.-P. Ru, X.-P. Qu, The influence of ZnO seed layers on n-ZnO nanostructure/p-GaN LEDs. Appl. Phys. A 109(2), 489–495 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    F.H. Alsultany, Z. Hassan, N.M. Ahmed, N.G. Elafadill, H.R. Abd, Effects of ZnO seed layer thickness on catalyst-free growth of ZnO nanostructures for enhanced UV photoresponse. Opt. Laser Technol. 98, 344–353 (2018)ADSCrossRefGoogle Scholar
  20. 20.
    A. Khayatian, V. Asgari, A. Ramazani, S. Akhtarianfar, M.A. Kashi, S. Safa, Diameter-controlled synthesis of ZnO nanorods on Fe-doped ZnO seed layer and enhanced photodetection performance. Mater. Res. Bull. 94, 77–84 (2017)CrossRefGoogle Scholar
  21. 21.
    S.-H. Lee, S.-H. Han, H.S. Jung, H. Shin, J. Lee, J.-H. Noh, S. Lee, I.-S. Cho, J.-K. Lee, J. Kim, Al-doped ZnO thin film: a new transparent conducting layer for ZnO nanowire-based dye-sensitized solar cells. J. Phys. Chem. C 114(15), 7185–7189 (2010)CrossRefGoogle Scholar
  22. 22.
    Y. Park, G. Nam, B. Kim, J.-Y. Leem, Effect of metallic Au seed layer annealing on the properties of electrodeposited ZnO nanorods. J. Nanosci. Nanotechnol. 15(11), 8553–8556 (2015)CrossRefGoogle Scholar
  23. 23.
    L. Li, H. Jiang, X. Han, Z. Zhan, H. Du, W. Lu, Z. Li, Z. Tao, Y. Fan, Optimizing growth of ZnO nanowire networks for high-performance UV detection. Ceram. Int. 43(17), 15978–15985 (2017)CrossRefGoogle Scholar
  24. 24.
    M. Amin, N.A. Shah, A.S. Bhatti, Development of highly sensitive UV sensor using morphology tuned ZnO nanostructures. Appl. Phys. A 118(2), 595–603 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    A. Khayatian, M.A. Kashi, R. Azimirad, S. Safa, Enhanced gas-sensing properties of ZnO nanorods encapsulated in an Fe-doped ZnO shell. J. Phys. D Appl. Phys. 47(7), 075003 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    R. Ahmad, N. Tripathy, M.-S. Ahn, J.-Y. Yoo, Y.-B. Hahn, Preparation of a highly conductive seed layer for calcium sensor fabrication with enhanced sensing performance. ACS Sens. 3(4), 772–778 (2018)CrossRefGoogle Scholar
  27. 27.
    A. Resmini, I. Tredici, C. Cantalini, L. Giancaterini, F. De Angelis, E. Rondanina, M. Patrini, D. Bajoni, U. Anselmi-Tamburini, A simple all-solution approach to the synthesis of large ZnO nanorod networks. J. Mater. Chem. A 3(8), 4568–4577 (2015)CrossRefGoogle Scholar
  28. 28.
    P. Giri, S. Dhara, R. Chakraborty, Effect of ZnO seed layer on the catalytic growth of vertically aligned ZnO nanorod arrays. Mater. Chem. Phys. 122(1), 18–22 (2010)CrossRefGoogle Scholar
  29. 29.
    S.-W. Chen, J.-M. Wu, Nucleation mechanisms and their influences on characteristics of ZnO nanorod arrays prepared by a hydrothermal method. Acta Mater. 59(2), 841–847 (2011)CrossRefGoogle Scholar
  30. 30.
    S.-H. Yi, S.-K. Choi, J.-M. Jang, J.-A. Kim, W.-G. Jung, Low-temperature growth of ZnO nanorods by chemical bath deposition. J. Colloid Interface Sci. 313(2), 705–710 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    B.S. Sannakashappanavar, C. Byrareddy, P.S. Kumar, A.B. Yadav, Seed layer effect on different properties and UV detection capability of hydrothermally grown ZnO nanorods over SiO2/p-Si substrate. Superlattices Microstruct. 117, 503–514 (2018)ADSCrossRefGoogle Scholar
  32. 32.
    M. Salina, N. Samah, M.M. Adnan, M. Rusop, Novel growth of aligned zinc oxide nanorod arrays on Mg 0.3 Zn 0.7 O seed layer and its rectifying behaviour. J. Fundam. Appl. Sci. 10(6), 879–895 (2018)Google Scholar
  33. 33.
    L.-X. Du, Y. Jiao, S.-Y. Niu, H. Miao, H.-B. Yao, K.-G. Wang, X.-Y. Hu, H.-B. Fan, Control of morphologies and properties of zinc oxide nanorod arrays by slightly adjusting their seed layers. Nanomater. Nanotechnol. 6, 1847980416663674 (2016)CrossRefGoogle Scholar
  34. 34.
    C.-Y. Kuo, R.-M. Ko, Y.-C. Tu, Y.-R. Lin, T.-H. Lin, S.-J. Wang, Tip shaping for ZnO nanorods via hydrothermal growth of ZnO nanostructures in a stirred aqueous solution. Cryst. Growth Des. 12(8), 3849–3855 (2012)CrossRefGoogle Scholar
  35. 35.
    W.I. Park, D.H. Kim, S.-W. Jung, G.-C. Yi, Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods. Appl. Phys. Lett. 80(22), 4232–4234 (2002)ADSCrossRefGoogle Scholar
  36. 36.
    M. Ghosh, R. Bhattacharyya, A. Raychaudhuri, Growth of compact arrays of optical quality single crystalline ZnO nanorods by low temperature method. Bull. Mater. Sci. 31(3), 283–289 (2008)CrossRefGoogle Scholar
  37. 37.
    B.-S. Wang, R.-Y. Li, Z.-Y. Zhang, X.-L. Wu, G.-A. Cheng, R.-T. Zheng, An overlapping ZnO nanowire photoanode for photoelectrochemical water splitting. Catal. Today 321, 100–106 (2018)Google Scholar
  38. 38.
    S.F. Akhtarianfar, A. Khayatian, R. Shakernejad, M. Almasi-Kashi, S.W. Hong, Improved sensitivity of UV sensors in hierarchically structured arrays of network-loaded ZnO nanorods via optimization techniques. RSC Adv. 7(51), 32316–32326 (2017)CrossRefGoogle Scholar
  39. 39.
    H. Wang, Z. Zhang, X. Wang, Q. Mo, Y. Wang, J. Zhu, H. Wang, F. Yang, Y. Jiang, Selective growth of vertical-aligned ZnO nanorod arrays on Si substrate by catalyst-free thermal evaporation. Nanoscale Res. Lett. 3(9), 309 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    M. Abdelfatah, A. El-Shaer, One step to fabricate vertical submicron ZnO rod arrays by hydrothermal method without seed layer for optoelectronic devices. Mater. Lett. 210, 366–369 (2018)CrossRefGoogle Scholar
  41. 41.
    H. Choi, Y.-M. Lee, J.-H. Yu, K.-H. Hwang, J.-H. Boo, Patterned well-aligned zno nanorods assisted with polystyrene monolayer by oxygen plasma treatment. Materials 9(8), 656 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    P.U. Londhe, N.B. Chaure, Effect of pH on the properties of electrochemically prepared ZnO thin films. Mater. Sci. Semicond. Process. 60, 5–15 (2017)CrossRefGoogle Scholar
  43. 43.
    H.-W. Chen, H.-W. Yang, H.-M. He, Y.-M. Lee, ZnO nanorod arrays prepared by chemical bath deposition combined with rapid thermal annealing: structural, photoluminescence and field emission characteristics. J. Phys. D Appl. Phys. 49(2), 025306 (2015)ADSCrossRefGoogle Scholar
  44. 44.
    T. Ates, C. Tatar, F. Yakuphanoglu, Preparation of semiconductor ZnO powders by sol–gel method: humidity sensors. Sens. Actuators A 190, 153–160 (2013)CrossRefGoogle Scholar
  45. 45.
    R. Shabannia, H.A. Hassan, Controllable vertically aligned ZnO nanorods on flexible polyethylene naphthalate (PEN) substrate using chemical bath deposition synthesis. Appl. Phys. A 114(2), 579–584 (2014)ADSCrossRefGoogle Scholar
  46. 46.
    M.C.M. Angub, C.J.T. Vergara, H.A.F. Husay, A.A. Salvador, M.J.F. Empizo, K. Kawano, Y. Minami, T. Shimizu, N. Sarukura, A.S. Somintac, Hydrothermal growth of vertically aligned ZnO nanorods as potential scintillator materials for future radiation detectors. J. Lumin. 203, 427–435 (2018)CrossRefGoogle Scholar
  47. 47.
    L. Vikas, K. Vanaja, P. Subha, M. Jayaraj, Fast UV sensing properties of n-ZnO nanorods/p-GaN heterojunction. Sens. Actuators A 242, 116–122 (2016)CrossRefGoogle Scholar
  48. 48.
    L. Zhu, W. Zeng, Room-temperature gas sensing of ZnO-based gas sensor: A review. Sens. Actuators A 267, 242–261 (2017)CrossRefGoogle Scholar
  49. 49.
    O. Lupan, L. Chow, T. Pauporté, L. Ono, B.R. Cuenya, G. Chai, Highly sensitive and selective hydrogen single-nanowire nanosensor. Sens. Actuators B Chem. 173, 772–780 (2012)CrossRefGoogle Scholar
  50. 50.
    O. Lupan, V. Ursaki, G. Chai, L. Chow, G. Emelchenko, I. Tiginyanu, A. Gruzintsev, A. Redkin, Selective hydrogen gas nanosensor using individual ZnO nanowire with fast response at room temperature. Sens. Actuators B Chem. 144(1), 56–66 (2010)CrossRefGoogle Scholar
  51. 51.
    Dhara S, Giri P ZnO nanorods arrays and heterostructures for the high sensitive UV photodetection, in Nanorods (InTech, 2012)Google Scholar
  52. 52.
    A.G. Ardakani, M. Pazoki, S.M. Mahdavi, A.R. Bahrampour, N. Taghavinia, Ultraviolet photodetectors based on ZnO sheets: the effect of sheet size on photoresponse properties. Appl. Surf. Sci. 258(14), 5405–5411 (2012)ADSCrossRefGoogle Scholar
  53. 53.
    C. Florica, N. Preda, M. Enculescu, I. Zgura, M. Socol, I. Enculescu, Superhydrophobic ZnO networks with high water adhesion. Nanoscale Res. Lett. 9(1), 385 (2014)ADSCrossRefGoogle Scholar
  54. 54.
    D. Langley, G. Giusti, C. Mayousse, C. Celle, D. Bellet, J.-P. Simonato, Flexible transparent conductive materials based on silver nanowire networks: a review. Nanotechnology 24(45), 452001 (2013)ADSCrossRefGoogle Scholar
  55. 55.
    M.R. Alenezi, S.J. Henley, S. Silva, On-chip fabrication of high performance nanostructured ZnO UV detectors. Sci. Rep. 5, 8516 (2015)ADSCrossRefGoogle Scholar
  56. 56.
    C. Yan, N. Singh, H. Cai, C.L. Gan, P.S. Lee, Network-enhanced photoresponse time of Ge nanowire photodetectors. ACS Appl. Mater. Interfaces 2(7), 1794–1797 (2010)CrossRefGoogle Scholar
  57. 57.
    C.-Y. Lu, S.-P. Chang, S.-J. Chang, T.-J. Hsueh, C.-L. Hsu, Y.-Z. Chiou, I.-C. Chen, A lateral ZnO nanowire UV photodetector prepared on a ZnO: Ga/glass template. Semicond. Sci. Technol. 24(7), 075005 (2009)ADSCrossRefGoogle Scholar
  58. 58.
    L. Zhu, X. Gu, F. Qu, J. Zhang, C. Feng, J. Zhou, S. Ruan, B. Kang, Electrospun ZnO nanofibers-based ultraviolet detector with high responsivity. J. Am. Ceram. Soc. 96(10), 3183–3187 (2013)Google Scholar
  59. 59.
    C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D. Aplin, J. Park, X. Bao, Y.-H. Lo, D. Wang, ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 7(4), 1003–1009 (2007)ADSCrossRefGoogle Scholar
  60. 60.
    D. Gedamu, I. Paulowicz, S. Kaps, O. Lupan, S. Wille, G. Haidarschin, Y.K. Mishra, R. Adelung, Rapid fabrication technique for interpenetrated ZnO nanotetrapod networks for fast UV sensors. Adv. Mater. 26(10), 1541–1550 (2014)CrossRefGoogle Scholar
  61. 61.
    D. Kim, W. Kim, S. Jeon, K. Yong, Highly efficient UV-sensing properties of Sb-doped ZnO nanorod arrays synthesized by a facile, single-step hydrothermal reaction. RSC Adv. 7(64), 40539–40548 (2017)CrossRefGoogle Scholar
  62. 62.
    A.D. Mahapatra, D. Basak, Enhanced ultraviolet photosensing properties in Bi2S3 nanoparticles decorated ZnO nanorods’ heterostructure. J. Alloys Compd. 797, 766–774 (2019)CrossRefGoogle Scholar
  63. 63.
    A. Ismail, M. Mamat, I.S. Banu, R. Amiruddin, M. Malek, N. Parimon, A. Zoolfakar, N.M. Sin, A. Suriani, M. Ahmad, Structural modification of ZnO nanorod array through Fe-doping: ramification on UV and humidity sensing properties. Nano-Struct. Nano-Objects 18, 100262 (2019)CrossRefGoogle Scholar
  64. 64.
    J. Liu, N. Yu, Y. Qi, H. Zhao, Q. Yuan, L. Cao, Facile fabrication of p-Cu2O/n-ZnO nanorods arrays heterojunction ultraviolet sensor by aqueous method. Mater. Res. Express 6(1), 015012 (2018)ADSCrossRefGoogle Scholar
  65. 65.
    A. Pimentel, A. Samouco, D. Nunes, A. Araújo, R. Martins, E. Fortunato, Ultra-fast microwave synthesis of ZnO nanorods on cellulose substrates for UV sensor applications. Materials 10(11), 1308 (2017)ADSCrossRefGoogle Scholar
  66. 66.
    Y. Xie, H. Li, D. Zhang, L. Zhang, High-performance quasi-solid-state photoelectrochemical-type ultraviolet photodetector based on ZnO nanowire arrays. Vacuum 164, 58–61 (2019)ADSCrossRefGoogle Scholar
  67. 67.
    L. Yang, H. Zhou, M. Xue, Z. Song, H. Wang, A self-powered, visible-blind ultraviolet photodetector based on n-Ga: ZnO nanorods/p-GaN heterojunction. Sens. Actuators A 267, 76–81 (2017)CrossRefGoogle Scholar
  68. 68.
    H. Zheng, Y. Jiang, S. Yang, Y. Zhang, X. Yan, J. Hu, Y. Shi, B. Zou, ZnO nanorods array as light absorption antenna for high-gain UV photodetectors. J. Alloys Compd. 812, 152158 (2019)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • S. M. A. Rastialhosseini
    • 1
  • A. Khayatian
    • 2
    Email author
  • R. Shariatzadeh
    • 3
  • M. Almasi Kashi
    • 2
  1. 1.Department of Mechanical EngineeringUniversity of KashanKashanIran
  2. 2.Department of PhysicsUniversity of KashanKashanIran
  3. 3.Department of Physics, Kashan BranchIslamic Azad UniversityKashanIran

Personalised recommendations