Advertisement

Applied Physics A

, 125:832 | Cite as

Structural, optical, optoelectrical and photovoltaic properties of the thermally evaporated Sb2Se3 thin films

  • I. M. El RadafEmail author
Article
  • 69 Downloads

Abstract

Production of inexpensive and promising light-absorbing materials is very important in photovoltaic device applications. In this study, we investigate the preparation of good-quality antimony selenide (Sb2Se3) thin films via thermal evaporation procedure with different thicknesses (241, 315, 387 and 429 nm). The analysis of the X-ray diffraction examination of the Sb2Se3 thin films demonstrates that the as-deposited Sb2Se3 thin films are polycrystalline with a single-phase orthorhombic structure. The elemental composition analysis of the evaporated Sb2Se3 thin film established that the as-deposited film has near stoichiometric composition of the compound. The linear optical results of the Sb2Se3 thin films revealed that the films show optical direct transitions and optical energy gaps in the range 1.12–1.05. The optoelectrical parameters of the Sb2Se3 thin films (ratio of the charge carrier concentrations to the effective mass \(N_{\text{opt}} m\), optical electronegativity \(\xi_{\text{opt}}\) and the lattice dielectric constant, \(\varepsilon_{L}\)) were estimated. The analysis of nonlinear optical parameters of the Sb2Se3 thin films reveals the increase of the film thickness combined with increase in the nonlinear refractive index. The Al/n-Si/Sb2Se3/Ag heterojunction was produced by the thermal evaporation technique. The photovoltaic constants of the Al/n-Si/Sb2Se3/Ag heterojunction were estimated from the JV curve and demonstrate a solar efficiency of 4.03%.

Notes

References

  1. 1.
    F. Koç, M. Sahin, Appl. Phys. A 125, 705 (2019)ADSCrossRefGoogle Scholar
  2. 2.
    V. Pawar, M. Kumar, P.K. Dubey, M.K. Singh, A.S.K. Sinha, P. Singh, Appl. Phys. A 125, 10 (2019)CrossRefGoogle Scholar
  3. 3.
    Y. Zhou, Y. Huang, J. Pang, K. Wang, J. Power Sources 440, 227149 (2019)CrossRefGoogle Scholar
  4. 4.
    K.D. Arun, K.R. Thomas, S.V.V. Ganesh, M. Shkir, S.A.J. Thirumalai, Appl. Phys. A 30, 12566–12576 (2019)Google Scholar
  5. 5.
    Q. Hao, J. Pang, Y. Zhang, J. Wang, L. Ma, O.G. Schmidt, Adv. Opt. Mater. 6, 1 (2018)ADSCrossRefGoogle Scholar
  6. 6.
    K.S.S. Rasool, K.T.R. Reddy, A.M.S.M.S. Tivanov, S.E.T.O.V. Korolik, Appl. Phys. A 125, 704 (2019)ADSCrossRefGoogle Scholar
  7. 7.
    M. Muhyuddin, M. Tayyab, A. Ijaz, A. Talha, F. Khan, M. Aftab, M.A. Basit, Appl. Phys. A 125, 716 (2019)ADSCrossRefGoogle Scholar
  8. 8.
    A.S.M. Ahmad, R. Shakil, K. Uzma, A. Zahid, A. Afzal, K.A. Mahmood, Appl. Phys. A 125, 713 (2019)ADSCrossRefGoogle Scholar
  9. 9.
    E.A. El-Sayad, J. Non. Cryst. Solids 354, 3806 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    V.L. Deringer, R.P. Stoffel, M. Wuttig, R. Dronskowski, Chem. Sci. 6, 5255 (2015)CrossRefGoogle Scholar
  11. 11.
    Y. Zhou, M. Leng, Z. Xia, J. Zhong, H. Song, X. Liu, B. Yang, J. Zhang, J. Chen, K. Zhou, Adv. Energy Mater. 4, 1301846 (2014)CrossRefGoogle Scholar
  12. 12.
    J. Ma, Y. Wang, Y. Wang, Q. Chen, J. Lian, W. Zheng, J. Phys. Chem. C 113, 13588 (2009)CrossRefGoogle Scholar
  13. 13.
    A.P. Torane, K.Y. Rajpure, C.H. Bhosale, Mater. Chem. Phys. 61, 219 (1999)CrossRefGoogle Scholar
  14. 14.
    K. Shen, C. Ou, T. Huang, H. Zhu, J. Li, Z. Li, Y. Mai, Sol. Energy Mater. Sol. Cells 186, 58 (2018)CrossRefGoogle Scholar
  15. 15.
    X. Hu, J. Tao, S. Chen, J. Xue, G. Weng, Z. Hu, J. Jiang, S. Chen, Z. Zhu, J. Chu, Sol. Energy Mater. Sol. Cells 187, 170 (2018)CrossRefGoogle Scholar
  16. 16.
    C. Yuan, L. Zhang, W. Liu, C. Zhu, Sol. Energy 137, 256 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    C. Ou, K. Shen, Z. Li, H. Zhu, T. Huang, Y. Mai, Sol. Energy Mater. Sol. Cells 194, 47 (2019)CrossRefGoogle Scholar
  18. 18.
    C. Chen, Y. Zhao, S. Lu, K. Li, Y. Li, B. Yang, W. Chen, L. Wang, D. Li, H. Deng, Adv. Energy Mater. 7, 1700866 (2017)CrossRefGoogle Scholar
  19. 19.
    D.-B. Li, X. Yin, C.R. Grice, L. Guan, Z. Song, C. Wang, C. Chen, K. Li, A.J. Cimaroli, R.A. Awni, Nano. Energy 49, 346 (2018)CrossRefGoogle Scholar
  20. 20.
    Y. Cao, X. Zhu, H. Chen, X. Zhang, J. Zhouc, Z. Hu, J. Pang, Sol. Energy Mater. Sol. Cells 200, 109945 (2019)CrossRefGoogle Scholar
  21. 21.
    C. Chen, W. Li, Y. Zhou, C. Chen, M. Luo, X. Liu, K. Zeng, B. Yang, C. Zhang, J. Han, Appl. Phys. Lett. 107, 43905 (2015)CrossRefGoogle Scholar
  22. 22.
    G.-X. Liang, X.-H. Zhang, H.-L. Ma, J.-G. Hu, B. Fan, Z.-K. Luo, Z.-H. Zheng, J.-T. Luo, P. Fan, Sol. Energy Mater. Sol. Cells 160, 257 (2017)CrossRefGoogle Scholar
  23. 23.
    M.-Z. Xue, Z.-W. Fu, J. Alloys Compd. 458, 351 (2008)CrossRefGoogle Scholar
  24. 24.
    Y. Rodríguez-Lazcano, Y. Peña, M.T.S. Nair, P.K. Nair, Thin Solid Films 493, 77 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    A.M. Mansour, I.S. Yahia, I.M.E. Radaf, Mater. Res. Express 5, 076406 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    I.M. El Radaf, M. Nasr, A.M. Mansour, Mater. Res. Express 5, 015904 (2018)ADSCrossRefGoogle Scholar
  27. 27.
    A. Sawaby, M.S. Selim, S.Y. Marzouk, M.A. Mostafa, A. Hosny, Phys. B Condens. Matter 405, 3412 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    E.R. Shaaban, N. Afify, A. El-Taher, J. Alloys Compd. 482, 400 (2009)CrossRefGoogle Scholar
  29. 29.
    I.M. El Radaf, T.A. Hameed, G.M. El Kommy, T.M. Dahy, Ceram. Int. 45, 3072 (2019)CrossRefGoogle Scholar
  30. 30.
    T.A. Hameed, A.R. Wassel, I.M. El Radaf, J. Alloys Compd. 805, 1 (2019)CrossRefGoogle Scholar
  31. 31.
    I.M. El Radaf, S.S. Fouad, A.M. Ismail, G.B. Sakr, Mater. Res. Express 5, 046406 (2018)ADSCrossRefGoogle Scholar
  32. 32.
    S. Fouad, I. El Radaf, P. Sharma, M. El-Bana, J. Alloys Compd 757, 124–133 (2018)CrossRefGoogle Scholar
  33. 33.
    S.A. Khan, F.S. Al-Hazmi, S. Al-Heniti, A.S. Faidah, A.A. Al-Ghamdi, Curr. Appl. Phys. 10, 145 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    E.R. Shaaban, M.N. Abd-el Salam, M. Mohamed, M.A. Abdel-Rahim, A.Y. Abdel-Latief, J. Mater. Sci. Mater. Electron 28, 13379 (2017)CrossRefGoogle Scholar
  35. 35.
    A.A.A. Darwish, M. Rashad, A.E. Bekheet, M.M. El-Nahass, J. Alloys Compd. 709, 640 (2017)CrossRefGoogle Scholar
  36. 36.
    S.H. Wemple, M. DiDomenico Jr., Phys. Rev. B 3, 1338 (1971)ADSCrossRefGoogle Scholar
  37. 37.
    S.H. Wemple, Phys. Rev. B 7, 3767 (1973)ADSCrossRefGoogle Scholar
  38. 38.
    K.A. Aly, Appl. Phys. A 99, 913 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    P. Sharma, S.C. Katyal, Mater. Chem. Phys. 112, 892 (2008)CrossRefGoogle Scholar
  40. 40.
    M.S. El-Bana, I.M. El Radaf, S.S. Fouad, G.B. Sakr, J. Alloys Compd. 705, 333–339 (2017)CrossRefGoogle Scholar
  41. 41.
    P. Sharma, M.S. El-Bana, S.S. Fouad, V. Sharma, J. Alloys Compd. 667, 204 (2016)CrossRefGoogle Scholar
  42. 42.
    A.S. Hassanien, J. Alloys Compd. 671, 566 (2016)CrossRefGoogle Scholar
  43. 43.
    R.R. Reddy, K.R. Gopal, K. Narasimhulu, L.S.S. Reddy, K.R. Kumar, C.V.K. Reddy, S.N. Ahmed, Opt. Mater. (Amst). 31, 209 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    S.S. Fouad, E.A.A. El-Shazly, M.R. Balboul, S.A. Fayek, M.S. El-Bana, J. Mater. Sci.: Mater. Electron. 17, 193 (2006)Google Scholar
  45. 45.
    A. Saeed, I. Sharma, Opt. Int. J. Light Electron Opt 200, 163415 (2020)CrossRefGoogle Scholar
  46. 46.
    I.M. El Radaf, T.A. Hamid, I.S. Yahia, Mater. Res. Express 5, 066416 (2018)ADSCrossRefGoogle Scholar
  47. 47.
    A.S. Hassanien, I. Sharma, J. Alloys Compd. 798, 750 (2019)CrossRefGoogle Scholar
  48. 48.
    I.S. Yahia, I.M. El Radaf, A.M. Salem, G.B. Sakr, J. Alloys Compd 766, 1056–1062 (2019)CrossRefGoogle Scholar
  49. 49.
    A.S. Hassanien, A.A. Akl, Phys. B Phys. Condens. Matter 554, 21–30 (2019)CrossRefGoogle Scholar
  50. 50.
    R.M. Abdelhameed, I.M. El Radaf, Mater. Res. Express 5, 66402 (2018)CrossRefGoogle Scholar
  51. 51.
    H. Tichá, L. Tichý, J. Optoelectron. Adv. Mater. 4, 381 (2002)Google Scholar
  52. 52.
    M.M. El-Nahass, A.A.M. Farag, Opt. Laser Technol. 44, 497 (2012)ADSCrossRefGoogle Scholar
  53. 53.
    I.M. El Radaf, R.M. Abdelhameed, J. Alloys Compd 765, 1174–1183 (2018)CrossRefGoogle Scholar
  54. 54.
    K.F. Abd El-Rahman, A.A.A. Darwish, E.A.A. El-Shazly, Mater. Sci. Semicond. Process. 25, 123 (2014)CrossRefGoogle Scholar
  55. 55.
    A. Ashery, I.M. El Radaf, M.M.M. Elnasharty, Silicon 1876, 9918 (2018)Google Scholar
  56. 56.
    I.M. El Radaf, H.I. Elsaeedy, H.A. Yakout, M.T. El Sayed, J. Electron. Mater. 48, 6480–6486 (2019)ADSCrossRefGoogle Scholar
  57. 57.
    M. Nasr, I.M. El Radaf, A.M. Mansour, J. Phys. Chem. Solids 115, 283–288 (2018)ADSCrossRefGoogle Scholar
  58. 58.
    A.A.A. Darwish, H.A.M. Ali, Phys. B Condens. Matter 571, 188 (2019)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Electron Microscope and Thin Films Department, Physics DivisionNational Research CentreGizaEgypt
  2. 2.Materials Physics and Energy Laboratory, College of Sciences and Art at ArRassQassim UniversityArrassSaudi Arabia

Personalised recommendations