Applied Physics A

, 125:818 | Cite as

Synthesis and characterization of Zn-incorporated TiO2 thin films: impact of crystallite size on X-ray line broadening and bandgap tuning

  • Tapash Chandra PaulEmail author
  • Jiban Podder


In the present work, the synthesis of pure and Zn-doped TiO2 thin films is reported using a simple and cost-effective thermal spray pyrolysis technique (SPT) with an aim to investigate the influence of Zn doping on the structural, morphological, optical and the electrical properties of TiO2 nanoparticles. The resulted TiO2 thin films have been deposited on commercial glass slides at substrate temperature of 450 °C using titanium(IV) butoxide as a precursor. The samples are structurally characterized by X-ray diffraction (XRD) method. Surface morphology, optical and electrical properties of the sample are elucidated by field emission scanning electron microscopy (FESEM), UV–visible spectroscopy and four-point probe method, respectively. X-ray diffractograms show the formation of pure anatase TiO2 phase and after Zn doping anatase phase of TiO2 remains unaltered. The crystallite size is found using the Scherrer method and also Williamson–Hall (W–H), Halder–Wagner (H–W) and Wagner–Agua (W–A) methods are employed to estimate the crystallite sizes and the strain from X-ray peak-broadening analysis. The obtained results indicate that the crystallite size and the lattice strain evaluated from Scherrer method, W–H, H–W and W–A analyses are highly intercorrelated. The characterization results of FESEM illustrate the existence of homogenous and well-dispersed spherical grains with the average diameter of 22–8 nm and agglomerated grains are observed as the Zn is inserted into TiO2 lattice as dopant. The estimated value of optical bandgap of TiO2 nanoparticles is red shifted from 3.86 to 3.78 eV and 4.12 to 4.04 eV in Tauc relation and K–M function, respectively. From four-point probe setup, it is found that the pure film deposited at 450 °C has manifested lowest resistivity 4.25 × 10−3 Ω-cm and then decreased further with increase of Zn contents.



  1. 1.
    K. Badeker, Ann. Phys. 327, 749 (1907)CrossRefGoogle Scholar
  2. 2.
    A. Arunachalam, S. Dhanapandian, C. Manoharan, J. Mater. Sci. Mater. Electron. 27, 659 (2016)CrossRefGoogle Scholar
  3. 3.
    C. He, Y. Yu, X. Hu, A. Larbot, Appl. Surf. Sci. 200, 239 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    S.H. Jeong, J.K. Kim, B.S. Kim, S.H. Shim, B.T. Lee, Vacuum 76, 507 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    T. Alasaarela, T. Saastamoinen, J. Hiltunen, A. Säynätjoki, A. Tervonen, P. Stenberg, M. Kuittinen, S. Honkanen, Appl. Opt. 49, 4321 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    T. Touam, M. Atoui, I. Hadjoub, A. Chelouche, B. Boudine, A. Fischer, A. Boudrioua, A. Doghmane, Appl. Phys. 67, 30302 (2014)Google Scholar
  7. 7.
    K.M. Chen, A.W. Sparks, H.C. Luan, D.R. Lim, K. Wada, L.C. Kimerling, Appl. Phys. Lett. 75, 3805 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    D.-J. Won, C.-H. Wang, D.-J. Choi, Jpn. J. Appl. Phys. 40, 1235 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    V. Senthilkumar, M. Jayachandran, C. Sanjeeviraja, Thin Solid Films 519, 991 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    I. Oja Acik, A. Katerski, A. Mere, J. Aarik, A. Aidla, T. Dedova, M. Krunks, Thin Solid Films 517, 2443 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    M. Kumar, D. Kumar, A.K. Gupta, J. Electron. Mater. 44, 152 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    A. Ramadoss, S.J. Kim, J. Alloys Compd. 561, 262 (2013)CrossRefGoogle Scholar
  13. 13.
    D. Mardare, F. Iacomi, N. Cornei, M. Girtan, D. Luca, Thin Solid Films 518, 4586 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    W. Naffouti, A. Jrad, T. Ben Nasr, S. Ammar, N. Turki-Kamoun, J. Mater. Sci. Mater. Electron. 27, 4622 (2016)CrossRefGoogle Scholar
  15. 15.
    K. Vijayalakshmi, S. David Jereil, Ceram. Int. 41, 3220 (2015)CrossRefGoogle Scholar
  16. 16.
    A.E. Shalan, M.M. Rashad, Appl. Surf. Sci. 283, 975 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    M. Sahu, P. Biswas, Nanoscale Res. Lett. 6, 1 (2011)Google Scholar
  18. 18.
    A. Kharoubi, A. Bouaza, B. Benrabah, A. Ammari, A. Khiali, Eur. Phys. J. Appl. Phys. 72, 30301 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    L.A. Patil, D.N. Suryawanshi, I.G. Pathan, D.M. Patil, Sens. Actuat. B Chem. 176, 514 (2013)CrossRefGoogle Scholar
  20. 20.
    D.H. Kim, H.S. Hong, S.J. Kim, J.S. Song, K.S. Lee, J. Alloys Compd. 375, 259 (2004)CrossRefGoogle Scholar
  21. 21.
    F. Huang, Q. Li, G.J. Thorogood, Y.-B. Cheng, R.A. Caruso, J. Mater. Chem. 22, 17128 (2012)CrossRefGoogle Scholar
  22. 22.
    B.A. Nejand, S. Sanjabi, V. Ahmadi, Trans. Nanotechnol. 17, 102 (2010)Google Scholar
  23. 23.
    F.F. Ngaffo, A.P. Caricato, M. Fernandez, M. Martino, F. Romano, Appl. Surf. Sci. 253, 6508 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    K.F. Azizi, M.-M.B. Mohagheghi, Thin Solid Films 621, 98 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    R. Chauhan, A. Kumar, R.P. Chaudhary, J. Sol-Gel. Sci. Technol. 61, 585 (2012)CrossRefGoogle Scholar
  26. 26.
    P. Manurung, Y. Putri, W. Simanjuntak, I.M. Low, Ceram. Int. 39, 255 (2013)CrossRefGoogle Scholar
  27. 27.
    B.C. Dev, M.H. Babu, J. Podder, S. Sagadevan, A. Zubair, J. Mater. Sci. Mater. Electron. 30, 15670 (2019)CrossRefGoogle Scholar
  28. 28.
    S.C. Das, R.J. Green, J. Podder, T.Z. Regier, G.S. Chang, A. Moewes, J. Phys. Chem. C 117, 12745 (2013)CrossRefGoogle Scholar
  29. 29.
    S.K. Sen, T.C. Paul, S. Dutta, M.A. Matin, M.F. Islam, M.A. Hakim, Surf. Interfaces 17, 100377 (2019)CrossRefGoogle Scholar
  30. 30.
    W. Weng, M. Ma, P. Du, G. Zhao, G. Shen, J. Wang, G. Han, Surf. Coat. Technol. 198, 340 (2005)CrossRefGoogle Scholar
  31. 31.
    J. Ben Naceur, R. Mechiakh, F. Bousbih, R. Chtourou, Appl. Surf. Sci. 257, 10699 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    S. Manzoor, S. Husain, A. Somvanshi, M. Fatema, N. Zarrin, Appl. Phys. A 125, 509 (2019)ADSCrossRefGoogle Scholar
  33. 33.
    N.R. Mathews, E.R. Morales, M.A. Corte’s-Jacome, J.A.T. Antonio, Sol. Energy 83, 1499 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    C.N.J. Wagner, N. Haven, Acta Cryst. 20, 312 (1965)Google Scholar
  35. 35.
    M. Karthikeyan, S. Um, Thin Solid Films 606, 63 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    S. Dhanapandian, A. Arunachalam, C. Manoharan, Appl. Nanosci. 6, 387 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    S.K. Sen, T.C. Paul, M.S. Manir, S. Dutta, M.N. Hossain, J. Podder, J. Mater. Sci. Mater. Electron. 30, 14355 (2019)CrossRefGoogle Scholar
  38. 38.
    A. Arunachalam, S. Dhanapandian, C. Manoharan, R. Sridhar, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 149, 904 (2015)CrossRefGoogle Scholar
  39. 39.
    V. Senthilkumar, P. Vickraman, M. Jayachandran, C. Sanjeeviraja, J. Mater. Sci. Mater. Electron. 21, 343 (2010)CrossRefGoogle Scholar
  40. 40.
    A. Arunachalam, S. Dhanapandian, C. Manoharan, J. Mater. Sci. Mater. Electron. 26, 10179 (2015)CrossRefGoogle Scholar
  41. 41.
    M. Balaji, J. Chandrasekaran, M. Raja, Mater. Sci. Semicond. Process. 43, 104 (2016)CrossRefGoogle Scholar
  42. 42.
    H. Gandelman, A.L. da Silva, L.B. Caliman, D. Gouvêa, Ceram. Int. 44, 11390 (2018)CrossRefGoogle Scholar
  43. 43.
    A. Arunachalam, S. Dhanapandian, C. Manoharan, G. Sivakumar, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 138, 105 (2015)ADSCrossRefGoogle Scholar
  44. 44.
    Y.V. Kolen, K.A. Kovnir, A.I. Gavrilov, A.V. Garshev, P.E. Meskin, B.R. Churagulov, M. Bouchard, C. Colbeau-justin, O.I. Lebedev, O.G. Van Tendeloo, M. Yoshimura, J. Phys. Chem. 109, 20303 (2005)CrossRefGoogle Scholar
  45. 45.
    A. Arunachalam, S. Dhanapandian, C. Manoharan, M. Bououdina, G. Ramalingam, M. Rajasekaran, M. Radhakrishnan, A.M. Ibraheem, Ceram. Int. 42, 11136 (2016)CrossRefGoogle Scholar
  46. 46.
    F. Li, L.X. Guan, M.L. Dai, J.J. Feng, M.M. Yao, Ceram. Int. 39, 7395 (2013)CrossRefGoogle Scholar
  47. 47.
    S.T. Sundari, N.C. Raut, T. Mathews, P.K. Ajikumar, S. Dash, A.K. Tyagi, B. Raj, Appl. Surf. Sci. 257, 7399 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    J. Liu, S.Y. Ma, X.L. Huang, L.G. Ma, F.M. Li, F.C. Yang, Q. Zhao, X.L. Zhang, Superlattices Microstruct. 52, 765 (2012)ADSCrossRefGoogle Scholar
  49. 49.
    M. Sharmin, A.H. Bhuiyan, Appl. Phys. A 124, 57 (2018)ADSCrossRefGoogle Scholar
  50. 50.
    M. Zahan, J. Podder, J. Mater. Sci. Mater. Electron. 30, 4259 (2019)CrossRefGoogle Scholar
  51. 51.
    A.E. Shalan, M.M. Rashad, Y. Yu, M. Lira-Cantú, M.S.A. Abdel-Mottaleb, Electrochim. Acta 89, 469 (2013)CrossRefGoogle Scholar
  52. 52.
    S. Dhanapandian, A. Arunachalam, C. Manoharan, J. Sol-Gel. Sci. Technol. 77, 119 (2016)CrossRefGoogle Scholar
  53. 53.
    H.M. Yadav, S.V. Otari, V.B. Koli, S.S. Mali, C.K. Hong, S.H. Pawar, S.D. Delekar, J. Photochem. Photobiol. A Chem. 280, 32 (2014)CrossRefGoogle Scholar
  54. 54.
    Y. Cong, J. Zhang, F. Chen, M. Anpo, D. He, J. Phys. Chem. C 111, 10618 (2007)CrossRefGoogle Scholar
  55. 55.
    M.R. Islam, J. Podder, Cryst. Res. Technol. 44, 286 (2009)CrossRefGoogle Scholar
  56. 56.
    M. Nesa, M. Sharmin, K.S. Hossain, A.H. Bhuiyan, J. Mater. Sci. Mater. Electron. 28, 12523 (2017)CrossRefGoogle Scholar
  57. 57.
    J.R. Mohamed, C. Sanjeeviraja, L. Amalraj, J. Asian Ceram. Soc. 4, 191 (2016)CrossRefGoogle Scholar
  58. 58.
    A.S. Hassanien, A.A. Akl, Superlattices Microstruct. 89, 153 (2016)ADSCrossRefGoogle Scholar
  59. 59.
    M.R. Islam, M. Rahman, S.F.U. Farhad, J. Podder, Surf. Interfaces 16, 120 (2019)CrossRefGoogle Scholar
  60. 60.
    V.R. Shinde, C.D. Lokhande, R.S. Mane, S.H. Han, Appl. Surf. Sci. 245, 407 (2005)ADSCrossRefGoogle Scholar
  61. 61.
    M. Engin, F. Atay, S. Kose, V. Bilgin, I. Akyuz, J. Electron. Mater. 38, 787 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsJagannath UniversityDhakaBangladesh
  2. 2.Department of PhysicsBangladesh University of Engineering and TechnologyDhakaBangladesh

Personalised recommendations