Applied Physics A

, 125:823 | Cite as

Real-time in situ monitoring of internal stress of the electroplating processes using FBG sensors

  • Yulong LiEmail author
  • Qinghua Sun
  • Xuewen LiEmail author


To study the internal stress during the electroplating processes, the Fiber Bragg Grating (FBG) sensors were electroplated with Ni, Zn, Cu films, respectively. During the electroplating, the current density was set to be 24 mA/cm2. The changes of internal stress of the metal films can be calculated according to the shift of central wavelength of the FBG sensors, blue shift showing a compressive stress and red shift showing a tensile stress. Results show: (i) the central wavelength of the FBG sensor blue shifted 2.26 nm after electroplating Ni for 420 min, the associated compressive stress in FBG sensor was calculated to be 551 MPa; (ii) the central wavelength of the FBG sensor red shifted 0.29 nm after electroplating Zn for 420 min, the associated tensile stress in FBG sensor was calculated to be 69 MPa; (iii) the central wavelength of the FBG sensor red shifted 0.04 nm after electroplating Cu for 420 min, the associated tensile stress in FBG sensor was calculated to be 10 MPa; (iv) a model characterizing the relationship between the internal stress and the central wavelength shift of the FBG was proposed, the feasibility and associated conclusions are verified by the nanoindentation tests.



This research was funded by the National Natural Science Foundation of China (51265035), the Key Research and Development Project of Jiangxi Province (20171BBE50009), the Academic and Technical Leaders Founding Project of Major Disciplines of Jiangxi Province (20182BCB22001) and the Postgraduate Innovative Special Foundation of Nanchang University (CX2018039)

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    K. Loger, A. Engel, J. Haupt, R. Lima De Miranda, G. Lutter, E. Quandt, Cardiovasc. Eng. Technol. 7(1), 69–77 (2016)CrossRefGoogle Scholar
  2. 2.
    Y. Li, H. Zhang, Y. Feng, G. Peng, Chin. Opt. Lett. 7(2), 115–117 (2009)CrossRefGoogle Scholar
  3. 3.
    P. Yang, J. Wang, X. Zhao, J. Wang, Z. Hu, Q. Huang, L. Yang, App. Phys. A 125(7), 481 (2019)ADSCrossRefGoogle Scholar
  4. 4.
    M. Ahmed, D.P. Butler, Infrared Phys. Technol. 71, 1–9 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    X.H. Tan, Y. Chen, Y.X. Liu, Appl. Opt. 53(15), 3273–3277 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    Y. Li, Y. Feng, X. Peng, H. Zhang, Opt. Commun. 285(21–22), 4275–4279 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Li, K. Yang, X. Li, Opt. Fiber Technol. 45, 368–375 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    T. Miyasaka, Bull. Chem. Soc. Jpn. 91(7), 1058–1068 (2018)CrossRefGoogle Scholar
  9. 9.
    P. Pinpithak, A. Kulkarni, H. Chen, M. Ikegami, T. Miyasaka, Bull. Chem. Soc. Jpn. 91(5), 754–760 (2018)CrossRefGoogle Scholar
  10. 10.
    A. Meng, L. Zhang, B. Cheng, J. Yu, A.C.S. Appl, Mater. Interfaces 11(6), 5581–5589 (2018)CrossRefGoogle Scholar
  11. 11.
    F. Spaepen, Acta Mater. 48(1), 31–42 (2000)CrossRefGoogle Scholar
  12. 12.
    G. Feng, X. Wang, D. Zhang, X. Xiao, K. Qian, App. Phys. A 125(5), 359 (2019)ADSCrossRefGoogle Scholar
  13. 13.
    J.A. Thornton, D.W. Hoffman, Thin Solid Films 171(1), 5–31 (1989)ADSCrossRefGoogle Scholar
  14. 14.
    X. Qu, Thin film physics (Shanghai Scientific and Technical Publishers, Shanghai, 1986), pp. 34–38Google Scholar
  15. 15.
    S. Rakshit, R. Tripuraneni, S.P.V. Nadimpalli, Exp. Mech. 58(4), 537–547 (2018)CrossRefGoogle Scholar
  16. 16.
    X. Zha, F. Jiang, X. Xu, Int. J. Mech. Sci. 134, 1–14 (2017)CrossRefGoogle Scholar
  17. 17.
    R. Blödorn, L.A. Bonomo, M.R. Viotti, R.B. Schroeter, J.A. Albertazzi, Exp. Tech 41(1), 37–44 (2017)CrossRefGoogle Scholar
  18. 18.
    D. Metten, G. Froehlicher, S. Berciaud, 2D Mater. 4, 014004 (2016).CrossRefGoogle Scholar
  19. 19.
    S. Dufrenoy, T. Chauveau, I. Lemaire-Caron, R. Brenner, B. Bacroix, Int. J. Mater. Form. 11(3), 341–435 (2018)CrossRefGoogle Scholar
  20. 20.
    Y. Li, W. Liu, Y. Feng, H. Zhang, Opt. Fiber Technol. 18(1), 7–13 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    M.C. Shih, C.L. Ko, C.Y. Yang, Opt. Laser Eng. 46(7), 546–549 (2008)CrossRefGoogle Scholar
  22. 22.
    Y. Li, C. Wen, H. Zhang, J. Yang, M. Yan, J. Jiang, IEEE Photonic Tech. Lett. 28(17), 1811–1814 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    S. Vepřek, T. Kunstmann, D. Volm, B.K. Meyer, J. Vac. Sci. Technol. A 15(1), 10–17 (1997)ADSCrossRefGoogle Scholar
  24. 24.
    S. Basrour, L. Robert, Mater. Sci. Eng. A 288(2), 270–274 (2000)CrossRefGoogle Scholar
  25. 25.
    S.H. Kim, Jpn. J. Appl. Phys. 49(1R), 010214 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    N.M. Martyak, Surf. Coat. Tech. 88(1–3), 139–146 (1997)CrossRefGoogle Scholar
  27. 27.
    F. Ren, L. Yin, S. Wang, Y. Xiong, A.A. Volinsky, B. Tian, S. Wei, T. Nonferr, Metal. Soc. 26(9), 2413–2418 (2016)Google Scholar
  28. 28.
    W.C. Oliver, G.M. Pharr, J. Mater. Res. 19(1), 3–20 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    S. Suresh, A.E. Giannakopoulos, Acta Mater. 46(16), 5755–5767 (1998)CrossRefGoogle Scholar
  30. 30.
    Y.H. Lee, D. Kwon, J. Mater. Res 17(4), 901–906 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Lab for Robot and Welding Automation of Jiangxi Province, Mechanical and Electrical Engineering SchoolNanchang UniversityNanchangChina
  2. 2.The Engineering Training Center of Nanchang University, Mechanical and Electrical Engineering SchoolNanchang UniversityNanchangChina

Personalised recommendations