Applied Physics A

, 125:810 | Cite as

A novel Ag nanoparticles/TiO2 nanowires-based photodetector and glucose concentration detection

  • Chiranjib Ghosh
  • Shyam Murli Manohar Dhar Dwivedi
  • Anupam Ghosh
  • Avijit Dalal
  • Aniruddha MondalEmail author


A unique vapour transport cum glancing angle deposition (VT-GLAD) technique was employed to fabricate titanium dioxide (TiO2) nanowires (NWs). The NWs were grown and assembled to form the clusters. Both brookite (412) and rutile (002) phase for TiO2 was obtained from X-ray diffraction (XRD). The d spacing of ~ 1.37 Å was calculated from the transmission electron microscopy (TEM) of TiO2 NWs, which corresponds to (002) crystal plane. The silver (Ag) nanoparticles (NPs) on TiO2 NWs were grown using thermal evaporation cum GLAD technique. The presence of Ag NPs on the TiO2 NWs enhanced the photoconduction as compared to bare TiO2 NWs device. The maximum photosensitivity of the Ag NPs/TiO2 NWs based device was recorded ~ 1.6 times compared to the bare TiO2 NWs based device at − 2.5 V. The Ag NPs containing device was highly UV sensitive and maximum responsivity for the device was calculated to be ~ 2.3 A/W at 370 nm. The device also possessed high responsivity rejection (RR) ratio of ~ 6.5 between UV (370 nm) and visible (450 nm) light. The Ag NPs decorated TiO2 NWs based detector also showed response to white light. The different concentration of glucose into deionised (DI) water-based solution was detected precisely under white light illumination. The normalised (light/dark) detector current/glucose concentration value was decreased from ~ 0.19 to ~ 0.05 at − 2.5 V, with an increase in glucose concentration into the solution from 40 mg/dl to 200 mg/dl.



The authors would like to acknowledge CSIR (03(1355)/16/EMR-II) for financial support. The authors acknowledge SAIF IIT Bombay for XRD measurement. The authors would also like to acknowledge COE, NIT Durgapur for FESEM facility. The authors gratefully acknowledge Professor Sudit Sekhar Mukhopadhyay, Department of Biotechnology, NIT Durgapur for providing glucose. The authors also appreciatively acknowledge Professor Kalyan Kumar Chattopadhyay, Department of Physics, Jadavpur University, Kolkata for providing the facility for TEM characterisation.


  1. 1.
    X. Wang, H. Wang, Y. Zhou, Y. Liu, B. Li, X. Zhou, H. Shen, Confined-space synthesis of single crystal TiO2 nanowires in atmospheric vessel at low temperature: a generalized approach. Sci. Rep. (2015). CrossRefGoogle Scholar
  2. 2.
    S. Chakrabartty, A. Mondal, A.K. Saha, Effect of annealing on optical, electrical and charge trapping properties of TiO2 nps arrays. J. Nanosci. Nanotechnol. 17, 1300–1306 (2017). CrossRefGoogle Scholar
  3. 3.
    A. Mondal, A. Ganguly, A. Das, B. Choudhuri, R.K. Yadav, The Ag nanoparticles/Tio2 thin film device for enhanced photoconduction and role of traps. Plasmonics 10, 667–673 (2015). CrossRefGoogle Scholar
  4. 4.
    S. Mondal, A. Ghosh, M.R. Piton, J.P. Gomes, J.F. Felix, Y.G. Gobato, H.V.A. Galeti, B. Choudhuri, S.M.M.D. Dwivedi, M. Henini, A. Mondal, Investigation of optical and electrical properties of erbium-doped TiO2 thin films for photodetector applications. J. Mater. Sci.: Mater. Electron. 29, 19588–19600 (2018). CrossRefGoogle Scholar
  5. 5.
    R. Lahiri, A. Ghosh, B. Choudhuri, A. Mondal, Investigation on improved performance of Erbium doped TiO2 nanowire based UV detector. Mater. Res. Bull. 103, 259–267 (2018). CrossRefGoogle Scholar
  6. 6.
    W. Lee, M. Hon, An ultraviolet photo-detector based on TiO2/water solid–liquid heterojunction. Appl. Phys. Lett. 99(25), 251102 (2011). ADSCrossRefGoogle Scholar
  7. 7.
    N.S. Ridhuan, K.A. Razak, Z. Lockman, Fabrication and characterization of glucose biosensors by using hydrothermally grown ZnO nanorods. Sci. Rep. (2018). CrossRefGoogle Scholar
  8. 8.
    J. Tang, Y. Wang, J.L.P. Da, J. Genga, G. Zheng, Sensitive enzymatic glucose detection by TiO2 nanowire photoelectrochemical biosensors. J. Mater. Chem. A 2, 6153–6157 (2014). CrossRefGoogle Scholar
  9. 9.
    A. Ganguly, A. Mondal, J. Dhar, N. Singh, S. Choudhury, Enhanced visible light absorption byTiO2 film patterned with Ag nanoparticles arrays. Physica E 54, 326–330 (2013). ADSCrossRefGoogle Scholar
  10. 10.
    S. Chakrabartty, A. Mondal, M. Sarkar, B. Choudhuri, A. Saha, A. Bhattacharyya, TiO2 nanoparticles arrays ultraviolet-a detector with Au Schottky contact. IEEE Photonics Technol. Lett. 26(11), 1065–1068 (2014). ADSCrossRefGoogle Scholar
  11. 11.
    P. Chinnamuthu, A. Mondal, J.C. Dhar, N.K. Singh, Visible light detection using glancing angle deposited TiO2 nanowire arrays. Jpn. J. Appl. Phys. 54(6S1), 06FJ01 (2015). CrossRefGoogle Scholar
  12. 12.
    T. Ji, Q. Liu, R. Zou, Y. Zhang, L. Wang, L. Sang, M. Liao, Hu, Enhanced UV-visible light photodetectors with a TiO2/Si heterojunction using band engineering. J. Mater. Chem. C 5, 12848–12856 (2017). CrossRefGoogle Scholar
  13. 13.
    P. Chinnamuthu, J.C. Dhar, A. Mondal, A. Bhattacharyya, N.K. Singh, Ultraviolet detection using TiO2 nanowire array with Ag Schottky contact. J. Phys. D Appl. Phys. 45(13), 135102 (2012). ADSCrossRefGoogle Scholar
  14. 14.
    R. Lahiri, A. Mondal, Superior memory of Er doped TiO2 nanowire MOS capacitor. IEEE Electron. Device Lett. 39, 1856–1859 (2018). ADSCrossRefGoogle Scholar
  15. 15.
    T. Wang, H. Jiang, L. Wan, Q. Zhao, T. Jiang, B. Wang, S. Wang, Potential application of functional porous TiO2 nanoparticles in light-controlled drug release and targeted drug delivery. Acta Biomater. 13, 354–363 (2015). CrossRefGoogle Scholar
  16. 16.
    Q. Wang, J. Huang, H. Li, A. Zhao, Y. Wang, K. Zhang, H. Sun, Y. Lai, Recent advances on smart TiO2 nanotube platforms for sustainable drug delivery applications. Int. J. Nanomed. 12, 151–165 (2017). CrossRefGoogle Scholar
  17. 17.
    Y. Yang, L. Jun, TiO2: a critical interfacial material for incorporating photosynthetic protein complexes and plasmonic nanoparticles into biophotovoltaics, Chapter 10, In: Book: application of titanium dioxide. (2017) Google Scholar
  18. 18.
    S. Haxha, J. Jhoja, Optical based noninvasive glucose monitoring sensor prototype. IEEE Photonics J. 8(6), 6805911 (2016). CrossRefGoogle Scholar
  19. 19.
    A. Ghosh, S.M.M.D. Dwivedi, H. Ghadi, P. Chinnamuthu, S. Chakrabarti, A. Mondal, Boosted UV sensitivity of er-doped in 2O3 thin films using plasmonic Ag nanoparticle-based surface texturing. Plasmonics 13, 1105–1113 (2018). CrossRefGoogle Scholar
  20. 20.
    S. Iravani, H. Korbekandi, S.V. Mirmohammadi, B. Zolfaghari, Synthesis of silver nanoparticles: chemical, physical and biological methods. Res. Pharm. Sciv. 9(6), PMC4326978 (2014). (PMID: 26339255) Google Scholar
  21. 21.
    C. Ngangbam, A. Mondal, B. Choudhuri, Efficient photon management with Ag nanoparticles coated TiO2 nanowire clusters for photodetector application. Electron. Mater, Lett. 11(5), 758–763 (2015). ADSCrossRefGoogle Scholar
  22. 22.
    S.M.M.D. Dwivedi, A. Ghosh, H. Ghadi, P. Murkute, P. Chinnamuthu, S. Chakrabartty, S. Chakrabarti, S. Bhunia, A. Mondal, Oblique angle deposited InN quantum dots array for infrared detection. J. Alloy. Compd. 766, 297–304 (2018). CrossRefGoogle Scholar
  23. 23.
    K. Bhowmik, A. Mondal, Si NW network by Ag nanoparticle assisted etching and TiO2/Si NWs as photodetector. Electron. Mater. Lett. 11(2), 187-19 (2015). ADSCrossRefGoogle Scholar
  24. 24.
    S. Mukherjee, D. Gall, Structure zone model for extreme shadowing conditions. Thin Solid Films 527, 158–163 (2013). ADSCrossRefGoogle Scholar
  25. 25.
    S.M.M.D. Dwivedi, S. Chakrabartty, S. Bhunia, S. Chakrabarti, H. Ghadi, P. Murkute, V. Chavan, A. Mondal, Pine shaped InN nanostructure growth via vapour transport method by own shadowing and infrared detection. J. Alloy. Compd. 722, 872–877 (2017). CrossRefGoogle Scholar
  26. 26.
    A. Ghosh, P. Murkute, R. Lahiri et al., GLAD synthesised erbium doped In2O3 nano-columns for UV detection. J. Mater. Sci 30, 12739 (2019). CrossRefGoogle Scholar
  27. 27.
    G. Wang, Y. Liu, C. Gao, L. Guo, M. Chi, K. Ijiro, M. Maeda, Y. Yin, Island growth in the seed-mediated overgrowth of monometallic colloidal nanostructures. Chem 3(4), 678–690 (2017). CrossRefGoogle Scholar
  28. 28.
    A. Barranco, A. Borras, A.R. Gonzalez-Elipe, A. Palmero, Perspectives on oblique angle deposition of thin films: from fundamentals to devices. Prog. Mater Sci. 76, 59–153 (2016). CrossRefGoogle Scholar
  29. 29.
    M. Ahamed, M.A.M. Khan, M.J. Akhtar, H.A. Alhadlaq, A. Alshamsan, Ag-doping regulates the cytotoxicity of TiO2 nanoparticles via oxidative stress in human cancer cells. Sci. Rep. 7, 17662 (2017). ADSCrossRefGoogle Scholar
  30. 30.
    C.J. Lee, C.H. Won, J.H. Lee, S.H. Hahm, H. Park, GaN-based ultraviolet passive pixel sensor on silicon (111) substrate. Sensors 19(5), 1051 (2019). CrossRefGoogle Scholar
  31. 31.
    A. Ghosh, S.M.M.D. Dwivedi, S. Chakrabartty, A. Mondal, Detailed investigation of defect states in Erbium doped In2O3 thin film. Mater. Res. Bull. 99, 211–218 (2018). CrossRefGoogle Scholar
  32. 32.
    F. Pellegrino, F. Sordello, M. Minella, C. Minero, V. Maurino, The role of surface texture on the photocatalytic H2 production on TiO2. Catalysts 9(32), 1–28 (2019). CrossRefGoogle Scholar
  33. 33.
    S.M.M.D. Dwivedi, A. Dalal, A. Ghosh, P. Murkute, H. Ghadi, C. Ghosh, S. Chakrabarti, S. Bhunia, A. Mondal, InN nanowires based Near-Infrared broadband optical detector. IEEE Photonics Technol. Lett. (2019). CrossRefGoogle Scholar
  34. 34.
    J.C. Dhar, A. Mondal, N.K. Singh, K.K. Chattopadhyay, Enhanced photoemission from glancing angle deposited SiOx-TiO2 axial heterostructure nanowire arrays. J. Appl. Phys. 113(17), 174304 (2013). ADSCrossRefGoogle Scholar
  35. 35.
    D.F. Swineharf, The beer-lambert law. J. Chem. Educ. 39(7), 333–335 (1962). CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsNational Institute of Technology DurgapurDurgapurIndia

Personalised recommendations