Applied Physics A

, 125:827 | Cite as

Synthesis of a novel magnetic–luminescent bifunctional imaging materials by introducing WO3–x interlayer

  • Hongxia Peng
  • Dan ZhangEmail author
  • Jilin Hu


A novel Fe3O4@WO3–x@YF3:Ce3+, Tb3+ imaging material was prepared by two-step method. Compared with the YF3:Ce3+, Tb3+, the luminescence intensity of Fe3O4@WO3–x@YF3:Ce3+,Tb3+ is obviously boosted. It showed that the protect effect and LSPR of WO3–x shielding layer play a role in enhancing the luminescence properties of the YF3: Ce3+, Tb3+. MTT assays showed that biomaterials have no poisonousness or harmful after-effects in cells. The magnetic saturation intensity is not obviously weakened by inserting WO3–x layer. The method can boost the luminescent property of the magnetic–luminescent material and stimulate its applications in cell imaging, targeting delivery, and thermotherapy.

Graphic abstract

In this study, Fe3O4@WO3–x@YF3:Ce3+,Tb3+ magnetic-luminescent bi-functional nanocomposites with best luminescent performance were synthesized by a simple direct precipitation method. Furthermore, the enhancement mechanism has been found as LSPR of WO3−x. The nanocomposites are potential application in tumor imaging and tumor precise surgery.



This work was funded by national natural science foundation of china (Grant Number 51704116), hunan province natural science foundation of china (Grant Number 2018JJ3252), the planned science and technology project of hunan province, china (Grant Number 2016TP1028), Loudi science and technology project and china postdoctoral science foundation (Grant Number 2017M612582).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    A. Jain, R. Koyani, C. Muñoz, Magnetic-luminescent cerium-doped gadolinium aluminum garnet nanoparticles for simultaneous imaging and photodynamic therapy of cancer cells. J. Colloid Interface Sci. 526, 220 (2018)ADSCrossRefGoogle Scholar
  2. 2.
    Q. Wu, Y. Lin, F. Wo, Novel magnetic-luminescent janus nanoparticles for cell labeling and tumor photothermal therapy. Small 170, 1129–1136 (2017)Google Scholar
  3. 3.
    Y. Hong, H. Shi, E. Wang, Preparation of Re(dbm)3·phen (Re=Eu3+,Tb3+) plate-loading Fe3O4 nanospheres and their magnetic-optic bifunctional property. J. Supercond. Nov. Magn. (2019). CrossRefGoogle Scholar
  4. 4.
    B. Song, W. Shi, W. Shi, A dual-modal nanoprobe based on Eu(iii) complex–MnO2, nanosheets nanocomposites for time-gated luminescence-magnetic resonance imaging of glutathione in vitro and in vivo. Nanoscale (2019). CrossRefGoogle Scholar
  5. 5.
    G.L. Fu, S.T. Sanjay, M.W. Dou, Biomaterials-mediated photothermal effect enables a new method for quantitative biochemical analysis using a thermometer. Nanoscale 8(10), 5422–5427 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    X. Cui, D. Mathe, N. Kovács, Synthesis, characterization and application of core-shell Co0.16Fe2.84O4@NaYF4 (Yb, Er) and Fe3O4@NaYF4 (Yb, Tm) biomaterials as tri-modal (MRI, PET/SPECT and optical) imaging agents. Bioconjugate. Chem. 27(2), 319–426 (2016)CrossRefGoogle Scholar
  7. 7.
    L. Cheng, C. Wang, X. Ma, Multifunctional upconversion biomaterialss for dual-modal imaging-guided stem cell therapy under remote magnetic control. Adv. Funct. Mater. 23(3), 272–279 (2013)CrossRefGoogle Scholar
  8. 8.
    U. Kostiv, V. Patsula, M. Šlouf, Physico-chemical characteristics, biocompatibility, and MRI applicability of novel monodisperse PEG-modified magnetic Fe3O4&SiO2 core–shell biomaterials. RSC Adv. 7, 8786–8796 (2017)CrossRefGoogle Scholar
  9. 9.
    N. Francolon, D. Boyer, F. Leccia, Preparation of core/shell NaYF4:Yb, Tm@dendrons biomaterials with enhanced upconversion luminescence for in vivo imaging. Nanomedicine 12(7), 2107–2112 (2016)CrossRefGoogle Scholar
  10. 10.
    Y. Yuan, Z. Ding, J. Qian, Casp3/7-instructed intracellular aggregation of Fe3O4biomaterialss enhances T2 MR imaging of tumor apoptosis. Nano. Lett. 16, 2686–2694 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    H.Q. Liu, J.Y. Han, M. Bean, Synthesis-driven, structure-dependent optical behavior in phase-tunable NaYF4:Yb, Er-based motifs and associated heterostructures. Phys. Chem. Chem. Phys. 19, 2153–2162 (2017)CrossRefGoogle Scholar
  12. 12.
    H. Suo, F.F. Hu, X.Q. Zhao, All-in-one thermometer-heater up-converting platform YF3:Yb3+, Tm3+ operating in the first biological window. J. Mater. Chem. C. 5, 1501–1509 (2017)CrossRefGoogle Scholar
  13. 13.
    G. Hu, N. Li, J. Tang, A general and facile strategy to fabricate multifunctional nanoprobes for simultaneous 19F magnetic resonance imaging, optical/thermal imaging and photothermaltherapy. Acs. Appl. Mater. Inter. 8(35), 22830–22840 (2016)CrossRefGoogle Scholar
  14. 14.
    X. Cui, D. Mathe, N. Kovács, Synthesis, characterization, and application of core-shell Co0.16Fe2.84O4@NaYF4(Yb, Er) and Fe3O4@NaYF4(Yb, Tm) biomaterials as trimodal (MRI, PET/SPECT, and optical) imaging agents. Bioconjugate. Chem. 27(2), 319–327 (2015)CrossRefGoogle Scholar
  15. 15.
    T. Wu, H.Y. Pan, R.B. Chen, Enhanced photoluminescence of Fe3O4@Y2O3:Eu3+ bifunctional biomaterialss by the Gd3+co-doping. J. Alloy. Compd. 666, 507–514 (2016)CrossRefGoogle Scholar
  16. 16.
    Z.L. Qin, S.A. Du, Y. Luo, Hydrothermal synthesis of superparamagnetic and red luminescent bifunctional Fe3O4@Mn2+-doped NaYF4:Yb/Ercore@shell monodisperse biomaterials and their subsequentlig and exchange in water. Appl. Surf. Sci. 378, 174–179 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    H.T.V. Hong, T.S. Atabaev, N.D. Nguyen, Luminescent core-shell Fe3O4@Gd2O3:Er3+, Li+ composite particles with enhanced optical properties. J. Sol-Gel. Sci. Techn. 71(3), 391–400 (2014)CrossRefGoogle Scholar
  18. 18.
    P. Jing, Q. Wang, B.C. Liu, Controlled fabrication of bi-functional Fe3O4@SiO2@Gd2O3:Yb, Er biomaterials and their magnetic, up-conversion luminescent properties. RSC Adv. 4, 44575–44583 (2014)CrossRefGoogle Scholar
  19. 19.
    J.X. Yang, X.W. Yang, H. Yang, Preparation and properties of multifunctional Fe@C@Y2O3:Eu3+nanocomposites. J. Alloy. Compd. 512(1), 190–199 (2012)CrossRefGoogle Scholar
  20. 20.
    Q. Ma, W. Yu, X. Dong, Janus Nanobelts: fabrication, structure and enhanced magnetic-fluorescent bifunctional performance. Nanoscale 6(5), 2945–2955 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    X. Chen, D.L. Zhou, W. Xu, Fabrication of Au-Ag Nanocage@NaYF4@ NaYF4: Yb, Er core-shell hybrid and its tunable upconversion enhancement. Sci. Rep. 7, 41079–41088 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    Z.J. Wang, C. Wang, Q.Y. Han, Metal-enhanced upconversion luminescence of NaYF4: Yb/Er with Ag biomaterials. Mater. Res. Bull. 88, 182–189 (2017)CrossRefGoogle Scholar
  23. 23.
    O. Balitskii, D. Moszyński, Z. Abbas, Aqueous processable WO3− x nanocrystals with solution tunable localized surface plasmonresonance. RSC Adv. 6, 59050–59059 (2016)CrossRefGoogle Scholar
  24. 24.
    H.X. Peng, G.X. Liu, X.T. Dong, Magnetic, luminescent and core–shell structured Fe3O4@YF3:Ce3+, Tb3+ bifunctional nanocomposites. Powder Technol. 215–216, 242–246 (2012)CrossRefGoogle Scholar
  25. 25.
    H.X. Peng, B. Cui, Y.S. Wang, Microwave-triggered drug release from a multifunctional β-CD-modified core-shell Fe3O4@ZnO: Er3+, Yb3+nanocarrier. Mat. Sci. Eng. C. 46, 253–260 (2015)CrossRefGoogle Scholar
  26. 26.
    Z. Zhang, L. Yang, Y.R. Fang, Near-infrared-plasmonic energy upconversion in anonmetallic heterostructure for efficient H2 evolution from ammonia borane. Adv. Sci. 180, 748–757 (2018)Google Scholar
  27. 27.
    H. Su, H. Zhang, X. Tang, Effects of MoO3 and WO3 additives on densification and magnetic properties of highly permeable NiCuZn ferrites. Mater. Chem. Phys. 102(2–3), 271–279 (2007)CrossRefGoogle Scholar
  28. 28.
    X.J. Tan, L.Z. Wang, C. Cheng, Plasmonic MoO3− x@MoO3 nanosheets for highly sensitive SERS detection through nanoshell-isolated electromagnetic enhancement. Chem. Commun. 52, 2893–2899 (2016)CrossRefGoogle Scholar
  29. 29.
    Q. Huang, S. Hu, J. Zhuang, MoO(3– x )-based hybrids with tunable localized surface plasmon resonances: chemical oxidation driving transformation from ultrathin nanosheets to nanotubes. Chemistry 18(48), 15283–15289 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials, School of Materials and Environmental Engineering, Science and TechnologyHunan University of HumanitiesLoudi HunanChina
  2. 2.Key Laboratory of New Materials and Technology for PackagingHunan University of TechnologyHunanChina
  3. 3.School of Materials Science and EngineeringCentral South UniversityChangshaP.R. China

Personalised recommendations