Advertisement

Applied Physics A

, 125:812 | Cite as

Fabrication of gold nanorod–zinc oxide nanocomposite on gap-fingered integrated interdigitated aluminum electrodes and their response to electrolytes

  • Hussaini Adam
  • Subash C. B. GopinathEmail author
  • M. K. Md Arshad
  • Santheraleka Ramanathan
  • Thanganadar Ashokkumar
  • Mohammad Isa Ahmad Azan
  • Tijjani Adam
  • Uda Hashim
Article
  • 17 Downloads

Abstract

This study describes the fabrication of three different gap-fingered aluminum-interdigitated electrodes (AlIDEs) on the silicon substrate based on photolithographic method, followed by integration of the gold nanorod–zinc oxide nanocomposite. The IDE masks were designed using AutoCAD software with the gaps of 10, 20, and 30 μm for design 1, 2, and 3, respectively. The morphological and electrical characterizations were subsequently performed using 3D-nanoprofiler, atomic force microscopy, high-power microscopy (HPM), scanning electron microscopy (SEM), and I–V. Validation of the fabricated surfaces (AlIDEs with/without gold nanorod–zinc oxide nanocomposite) against the electrolytes was performed at different pHs which are ranging from 1 to 12. SEM revealed the following gaps, 18.4, 20, and 40.5 μm for bare 1, 2, and 3, respectively. The measurements on I–V for bare AlIDEs indicated the electrolyte influences at different pH solutions, which were almost similar in terms of current variations except at highly acidic and alkaline. AlIDEs were well fabricated and the smaller the gap displayed the better the sensitivity, hence device 1 AlIDE has a good performance. Using different pH solutions which ranging from pH 1–12, before and after AlIDEs were coated with zinc oxide and gold nanorod. The responses of the devices were similar, fluctuating from highly acidic region to highly alkaline region in the cases of AlIDEs bare 1 and 3. Bare 2 AlIDE displayed similar responses with the AlIDE that was deposited with gold nanorod. With these results, we can conclude that deposition of gold nanorod on the device brought about the orderly response to the different pH and with the increment from acidic to alkaline increases, the proportional changes with the current were noticed.

Notes

Supplementary material

339_2019_3106_MOESM1_ESM.docx (2.4 mb)
Supplementary material 1 (DOCX 2408 kb)

References

  1. 1.
    C. Cheen, S.C.B. Gopinath, L. Wei, X. Rebecca, V. Perumal, T. Lakshmipriya, M. Shuaib, M. Saheed, Int. J. Biol. Macromol. 116, 765 (2018)CrossRefGoogle Scholar
  2. 2.
    S. Neethirajan, S.K. Tuteja, S.T. Huang, D. Kelton, Biosens. Bioelectron. 98, 398 (2017)CrossRefGoogle Scholar
  3. 3.
    P.S. Kumar, C. Balachandran, V. Duraipandiyan, D. Ramasamy, S. Ignacimuthu, N.A. Al-dhabi, Appl. Nanosci. 5(2), 169–180 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    N.R. Dalila, M.K. Md Arshad, S.C.B. Gopinath, W.M.W. Norhaimi, M.F.M. Fathil, Biosens. Bioelectron. 132, 248 (2019)CrossRefGoogle Scholar
  5. 5.
    S. Taniselass, M.K. Md Arshad, S.C.B. Gopinath, Biosens. Bioelectron. 130, 276 (2019)CrossRefGoogle Scholar
  6. 6.
    H.H. Nguyen, S.H. Lee, U.J. Lee, C.D. Fermin, M. Kim, Materials 12, 121 (2019)ADSCrossRefGoogle Scholar
  7. 7.
    P. Forssén, E. Multia, J. Samuelsson, M. Andersson, T. Aastrup, S. Altun, D. Wallinder, L. Wallbing, T. Liangsupree, M.L. Riekkola, T. Fornstedt, Anal. Chem. 90, 5366 (2018)CrossRefGoogle Scholar
  8. 8.
    N. Bhalla, P. Jolly, N. Formisano, P. Estrela, Essays Biochem. 60, 1 (2016)CrossRefGoogle Scholar
  9. 9.
    P. Ambhorkar, Z. Wang, H. Ko, S. Lee, K.I. Koo, K. Kim, D.I.D. Cho, Micromachines 9, 1 (2018)CrossRefGoogle Scholar
  10. 10.
    H. Li, D. Du, C. Zhu, G. Yang, Y. Lin, Anal. Chem. 87, 230 (2014)Google Scholar
  11. 11.
    S. Malhotra, A. Verma, N. Tyagi, V. Kumar, Int. J. Adv. Res. Innov. Ideas Educ. 3, 44 (2017)Google Scholar
  12. 12.
    S. Kiani, P. Rezaei, M. Navaei, M.S. Abrishamian, IEEE Sens. J. 18, 9971 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Sensors 10, 2088 (2010)CrossRefGoogle Scholar
  14. 14.
    H. Gómez-Pozos, J.L. González-Vidal, G.A. Torres, M. de la Luz Olvera, L. Castañeda, Sensors (Switzerland) 14, 403 (2013)CrossRefGoogle Scholar
  15. 15.
    L. Durai, S. Badhulika, New J. Chem. 43, 11994 (2019)CrossRefGoogle Scholar
  16. 16.
    S. Vigneshvar, C.C. Sudhakumari, B. Senthilkumaran, H. Prakash, Front. Bioeng. Biotechnol. 4, 1 (2016)CrossRefGoogle Scholar
  17. 17.
    S. Neethirajan, V. Ragavan, X. Weng, R. Chand, Biosensors 8, 23 (2018)CrossRefGoogle Scholar
  18. 18.
    S. Ramanathan, S.C.B. Gopinath, MK Md Arshad, P. Poopalan, Biosens. Bioelectron. 141, 111434 (2019)CrossRefGoogle Scholar
  19. 19.
    D. Pawar, Microchim. Acta 184, 253 (2019)CrossRefGoogle Scholar
  20. 20.
    Ü. Anik, S. Timur, Z. Dursun, Microchim. Acta 186, 196 (2019)CrossRefGoogle Scholar
  21. 21.
    H. Kaur, A. Bhosale, S. Shrivastav, Int. J. Health Sci. Res. 8, 315 (2018)Google Scholar
  22. 22.
    N. Soin, S. Norhafiezah, A.H. Azman, M.F. Fatin, U. Hashim, R.M. Ayub, M.A. Farehanim, Adv. Mater. Res. 1109, 253 (2015)CrossRefGoogle Scholar
  23. 23.
    N.S. Mazlan, M.M. Ramli, M.M.A.B. Abdullah, D.S.C. Halin, S.S.M. Isa, L.F.A. Talip, N.S. Danial, S.A.Z. Murad, AIP Conference Proceedings 1885, (2017)Google Scholar
  24. 24.
    M. Pirsaheb, S. Mohammadi, A. Salimi, M. Payandeh, Microchim. Acta 186, 231 (2019)CrossRefGoogle Scholar
  25. 25.
    L.E. Delle, V. Pachauri, A. Vlandas, M. Riedel, B. Lägel, R. Lilischkis, X.T. Vu, P. Wagner, R. Thoelen, F. Lisdat, S. Ingebrandt, Sens. Actuators B Chem. 265, 115 (2018)CrossRefGoogle Scholar
  26. 26.
    S.C.B. Gopinath, S. Ramanathan, K. Hann Suk, M. Ee Foo, P. Anbu, M.N.A. Uda, MATEC Web of Conferences 150, 06002 (2018)Google Scholar
  27. 27.
    V. Perumal, U. Hashim, S.C.B. Gopinath, H.R. Prasad, L. Wei-wen, S.R. Balakrishnan, T. Vijayakumar, R.A. Rahim, Nanoscale Res. Lett. 11, 31 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    A. Florea, G. Melinte, I. Simon, C. Cristea, Biosensors 9, 38 (2019)CrossRefGoogle Scholar
  29. 29.
    I. Letchumanan, S.C.B. Gopinath, M.K. Md Arshad, P. Anbu, Biosens. Bioelectron. 131, 128 (2019)CrossRefGoogle Scholar
  30. 30.
    D. Tonelli, E. Scavetta, I. Gualandi, Sensors (Switzerland) 19, 1186 (2019)CrossRefGoogle Scholar
  31. 31.
    V. Perumal, M. Shuaib, M. Saheed, N. Muti, J. Chiu, Biosens. Bioelectron. 116, 116 (2018)CrossRefGoogle Scholar
  32. 32.
    L. Coustan, G. Shul, D. Bélanger, Electrochem. commun. 77, 89 (2017)CrossRefGoogle Scholar
  33. 33.
    I. Unlu, J.W. Soares, D.M. Steeves, J.E. Whitten, Langmuir 31, 8718 (2015)CrossRefGoogle Scholar
  34. 34.
    L.L. Sin, M.K. Md Arshad, M.F.M. Fathil, R. Adzhri, M.N.M. Nuzaihan, A.R. Ruslinda, S.C.B. Gopinath, U. Hashim, AIP Conference Proceedings 1733, 1 (2016)Google Scholar
  35. 35.
    E. Kostal, S. Kasemann, C. Dincer, S. Partel, Multidisciplinary Digital Publishing Institute Proceedings. 2(13), 2 (2018)Google Scholar
  36. 36.
    D. Sharma, J. Lee, J. Seo, H. Shin, Sensors (Basel). 17, E2128 (2017)CrossRefGoogle Scholar
  37. 37.
    J.D. Benck, B.A. Pinaud, Y. Gorlin, T.F. Jaramillo, PLoS One 9, e107942 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    M.Y. Ho, P.S. Khiew, D. Isa, T.K. Tan, W.S. Chiu, C.H. Chia, Nano 09, 1430002 (2014)CrossRefGoogle Scholar
  39. 39.
    A.K. Muaz, U. Hashim, W.-W. Liu, F. Ibrahim, T. KL, M.S. Mohkta, Appl. Phys. 125(8), 548 (2016)Google Scholar
  40. 40.
    S. Ramanathan, S.C.B. Gopinath, M.K. Md Arshad, P. Poopalan, F.K. Loong, T. Lakshmipriya, Appl. Phys. A 125, 548 (2019)ADSCrossRefGoogle Scholar
  41. 41.
    N. El-Shafai, M.E. El-Khouly, M. El-Kemary, M. Ramadan, I. Eldesoukey, M. Masoud, RSC Adv. 9, 3704 (2019)CrossRefGoogle Scholar
  42. 42.
    V. Mututu, A.K. Sunitha, R. Thomas, M. Pandey, B. Manoj, Int. J. Electrochem. Sci. 14, 3752 (2019)CrossRefGoogle Scholar
  43. 43.
    H. Amanzadeh, Y. Yamini, M. Moradi, Anal. Chim. Acta. 884, 52 (2015)CrossRefGoogle Scholar
  44. 44.
    G. Serianni, P. Agostinetti, M. Agostini, V. Antoni, D. Aprile, C. Baltador, M. Barbisan, M. Brombin, M. Cavenago, G. Chitarin, M. Dalla Palma, R. Delogu, F. Fellin, N. Fonnesu, N. Marconato, R. Pasqualotto, A. Pimazzoni, E. Sartori, S. Spagnolo, M. Spolaore, P. Veltri, B. Zaniol, M. Zaupa, New J. Phys. 19, 045003 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hussaini Adam
    • 1
  • Subash C. B. Gopinath
    • 1
    • 2
    Email author
  • M. K. Md Arshad
    • 1
    • 3
  • Santheraleka Ramanathan
    • 1
  • Thanganadar Ashokkumar
    • 4
  • Mohammad Isa Ahmad Azan
    • 1
  • Tijjani Adam
    • 5
  • Uda Hashim
    • 1
  1. 1.Institute of Nano Electronic EngineeringUniversiti Malaysia PerlisKangarMalaysia
  2. 2.School of Bioprocess EngineeringUniversiti Malaysia PerlisArauMalaysia
  3. 3.School of Microelectronic EngineeringUniversiti Malaysia PerlisArauMalaysia
  4. 4.RSET and RSITAssam Royal Global UniversityGuwahatiIndia
  5. 5.Faculty of TechnologyUniversiti Malaysia Perlis, Kampus Uniciti Alam Sg. ChuchuhPadang Besar (U)Malaysia

Personalised recommendations