Applied Physics A

, 125:796 | Cite as

Enhanced acetone sensing performance of the ZnFe2O4/SnO2 nanocomposite

  • Qing Ni
  • Li SunEmail author
  • Ensi Cao
  • Wentao Hao
  • Yongjia Zhang
  • Lin Ju


ZnFe2O4/SnO2 semiconductor nanocomposites with various mole ratios were prepared by a simple chemical synthesis process that based on sol–gel method. The structural properties were determined by X-ray diffraction and scanning electron microscope technique. The XRD study reveals that no impurity phase, such as ZnO, Fe2O3, existed in all the samples. The average grain size was found to be about 39.51 nm when the mole ratio of ZnFe2O4/SnO2 is 2:1 (Z2S1), which is benefit for improving gas sensing property. The Z2S1 sample showed a relatively higher response (11.46) at a lower working temperature (176 °C) to acetone compared with other composites, and the response/recovery time were both very short. The improving gas sensing properties may be due to the fine grain and the formation of the ZnFe2O4/SnO2 heterojunction structure.



This work was supported by National Natural Science Foundation of China (NSFC) (No.51602214, No.11604234 and No.11404236), Natural Science Foundation of Shanxi Province (No. 201601D202010).


  1. 1.
    H. Zhang, F. Meng, L. Liu, Y. Chen, P. Wang, Highly sensitive H2S sensor based on solvothermally prepared spinel ZnFe2O4 nanoparticles. J. Alloy. Compd. 764, 147–154 (2018)CrossRefGoogle Scholar
  2. 2.
    K.K. Kefeni, B.B. Mamba, T.A.M. Msagati, Application of spinel ferrite nanoparticles in water and wastewater treatment: a review. Sep. Purif. Technol. 188, 399–422 (1990)CrossRefGoogle Scholar
  3. 3.
    S. Zawar, S. Atiq, S. Riaz, S. Naseem, Correlation between particle size and magnetic characteristics of Mn-substituted ZnFe2O4 ferrites. Superlattice. Microst. 93, 50–56 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    A. Šutka, K.A. Gross, Spinel ferrite oxide semiconductor gas sensors. Sens. Actuators B 222, 95–105 (2016)CrossRefGoogle Scholar
  5. 5.
    T. Liu, J. Liu, Q. Liu, L. Rumin, H. Zhang, X. Jing, J. Wang, Shape-controlled fabrication and enhanced gas sensing properties of uniform sphere-like ZnFe2O4 hierarchical architectures. Sens. Actuators B 250, 111–120 (2017)CrossRefGoogle Scholar
  6. 6.
    X. Yang, Q. Yu, S. Zhang, P. Sun, H. Lu, X. Yan, F. Liu, X. Zhou, X. Liang, Y. Gao, G. Lu, Highly sensitive and selective triethylamine gas sensor based on porous SnO2/Zn2SnO4 composites. Sens. Actuators B 266, 213–220 (2018)CrossRefGoogle Scholar
  7. 7.
    T. Yang, K. Gu, M. Zhu, Q. Lu, C. Zhai, Q. Zhao, X. Yang, M. Zhang, ZnO–SnO2 heterojunction nanobelts: synthesis and ultraviolet light irradiation to improve the triethylamine sensing properties. Sens. Actuators B 279, 410–417 (2019)CrossRefGoogle Scholar
  8. 8.
    H. Yu, T. Yang, Z. Wang, Z. Li, Q. Zhao, M. Zhang, p-N-Heterostructural sensor with SnO–SnO2 for fast NO2 sensing response properties at room temperature. Sens. Actuators B 258, 517–526 (2018)CrossRefGoogle Scholar
  9. 9.
    J.Y. Patil, D.Y. Nadargi, J.L. Gurav, I.S. Mulla, S.S. Suryavanshi, Glycine combusted ZnFe2O4 gas sensor: evaluation of structural, morphological and gas response properties. Ceram. Int. 40, 10607–10613 (2014)CrossRefGoogle Scholar
  10. 10.
    F. Li, X. Gao, R. Wang, T. Zhang, G. Lu, N. Barsan, Design of core-shell heterostructure nanofibers with different work function and their sensing properties to trimethylamine. ACS Appl. Mater. Inter. 8, 19799–19806 (2016)CrossRefGoogle Scholar
  11. 11.
    H. Song, L. Zhu, Y. Li, Z. Lou, M. Xiao, Z. Ye, Preparation of ZnFe2O4 nanostructures and highly efficient visible-light-driven hydrogen generation with the assistance of nanoheterostructures. J. Mater. Chem. A 3, 8353–8360 (2015)CrossRefGoogle Scholar
  12. 12.
    M. Sun, Y. Chen, G. Tian, A. Wu, H. Yan, H. Fu, Stable mesoporous ZnFe2O4 as an efficient electrocatalyst for hydrogen evolution reaction. Electrochim. Acta 190, 186–192 (2016)CrossRefGoogle Scholar
  13. 13.
    X. Hao, B. Wang, C. Ma, F. Liu, X. Yang, T. Liu, X. Liang, C. Yang, H. Zhu, G. Lu, Mixed potential type sensor based on stabilized zirconia and Co1 xZnxFe2O4 sensing electrode for detection of acetone. Sens. Actuators B 255, 1173–1181 (2018)CrossRefGoogle Scholar
  14. 14.
    S. Bradberry, Acetone. Medicine 44, 127 CrossRefGoogle Scholar
  15. 15.
    M.E. Franke, T.J. Koplin, U. Simon, Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2, 36–50 (2006)CrossRefGoogle Scholar
  16. 16.
    R.P. Patil, C. Hiragond, G.H. Jain, P.K. Khanna, V.B. Gaikwad, P.V. More, La doped BaTiO3 nanostructures for room temperature sensing of NO2/NH3: focus on La concentration and sensing mechanism. Vacuum 166, 37–44 (2019)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Ma, Y. Lu, H. Gou, W. Zhang, S. Yan, X. Xu, Octahedral NiFe2O4 for high-performance gas sensor with low working temperature. Ceram. Int. 44, 2620–2625 (2018)CrossRefGoogle Scholar
  18. 18.
    C. Liu, B. Wang, T. Wang, J. Liu, P. Sun, X. Chuai, G. Lu, Enhanced gas sensing characteristics of the flower-like ZnFe2O4/ZnO microstructures. Sens. Actuators B 248, 902–909 (2017)CrossRefGoogle Scholar
  19. 19.
    F. Liu, X. Chu, Y. Dong, W. Zhang, W. Sun, L. Shen, Acetone gas sensors based on graphene-ZnFe2O4 composite prepared by solvothermal method. Sens. Actuators B 188, 469–474 (2013)CrossRefGoogle Scholar
  20. 20.
    S. Wang, J. Zhang, J. Yang, X. Gao, H. Zhang, Y. Wang, Z. Zhu, Spinel ZnFe2O4 nanoparticle-decorated rod-like ZnO nanoheterostructures for enhanced gas sensing performances. RSC Adv. 5, 10048–10057 (2015)CrossRefGoogle Scholar
  21. 21.
    Y. Zhu, H. Wang, J. Liu, M. Yin, L. Yu, J. Zhou, Y. Liu, F. Qiao, High-performance gas sensors based on the WO3–SnO2 nanosphere composites. J. Alloy. Compd. 782, 789–795 (2019)CrossRefGoogle Scholar
  22. 22.
    X. Li, H. Zhang, C. Feng, Y. Sun, J. Ma, C. Wang, G. Lu, Novel cage-like α-Fe2O3/SnO2 composite nanofibers by electrospinning for rapid gas sensing properties. RSC Adv. 4, 27552–27555 (2014)CrossRefGoogle Scholar
  23. 23.
    S. Bai, H. Liu, R. Luo, A. Chen, D. Li, SnO2@Co3O4 p–n-heterostructures fabricated by electrospinning and mechanism analysis enhanced acetone sensing. RSC Adv. 4, 62862–62868 (2014)CrossRefGoogle Scholar
  24. 24.
    N. Van Hoang, C.M. Hung, N.D. Hoa, N. Van Duy, N. Van Hieu, Facile on-chip electrospinning of ZnFe2O4 nanofiber sensors with excellent sensing performance to H2S down ppb level. J. Hazard. Mater. 360, 6–16 (2018)CrossRefGoogle Scholar
  25. 25.
    S. Liu, S. Gao, Z. Wang, T. Fei, T. Zhang, Oxygen vacancy modulation of commercial SnO2 by an organometallic chemistry-assisted strategy for boosting acetone sensing performances. Sens. Actuators B 290, 493–502 (2019)CrossRefGoogle Scholar
  26. 26.
    M.A. Han, H.-J. Kim, H.C. Lee, J.-S. Park, H.-N. Lee, Effects of porosity and particle size on the gas sensing properties of SnO2 films. Appl. Surf. Sci. 481, 133–137 (2019)ADSCrossRefGoogle Scholar
  27. 27.
    X. Hu, Z. Zhu, Z. Li, L. Xie, Y. Wu, L. Zheng, Heterostructure of CuO microspheres modified with CuFe2O4 nanoparticles for highly sensitive H2S gas sensor. Sens. Actuators B 264, 139–149 (2018)CrossRefGoogle Scholar
  28. 28.
    H. Xu, J. Ju, W. Li, J. Zhang, J. Wang, B. Cao, Superior triethylamine-sensing properties based on TiO2/SnO2 n–n heterojunction nanosheets directly grown on ceramic tubes. Sens. Actuators B 228, 634–642 (2016)CrossRefGoogle Scholar
  29. 29.
    P. Sun, X. Zhou, C. Wang, K. Shimanoe, G. Lu, N. Yamazoe, Hollow SnO2/α-Fe2O3 spheres with a double-shell structure for gas sensors. J. Mater. Chem. A 2, 1302–1308 (2014)CrossRefGoogle Scholar
  30. 30.
    S. Li, M. Cheng, G. Liu, L. Zhao, B. Zhang, Y. Gao, H. Lu, H. Wang, J. Zhao, F. Liu, X. Yan, T. Zhang, G. Lu, High-response and low-temperature nitrogen dioxide gas sensor based on gold-loaded mesoporous indium trioxide. J. Colloid Interf. Sci. 524, 368–378 (2018)ADSCrossRefGoogle Scholar
  31. 31.
    S.-W. Choi, A. Katoch, J. Zhang, S.S. Kim, Electrospun nanofibers of CuO–SnO2 nanocomposite as semiconductor gas sensors for H2S detection. Sens. Actuators B 176, 585–591 (2013)CrossRefGoogle Scholar
  32. 32.
    X. Li, D. Lu, C. Shao, G. Lu, X. Li, Y. Liu, Hollow CuFe2O4/α-Fe2O3 composite with ultrathin porous shell for acetone detection at ppb levels. Sens. Actuators B 258, 436–446 (2018)CrossRefGoogle Scholar
  33. 33.
    W. Ge, Y. Chang, V. Natarajan, Z. Feng, J. Zhan, X. Ma, In2O3–SnO2 hybrid porous nanostructures delivering enhanced formaldehyde sensing performance. J. Alloy. Compd. 746, 36–44 (2018)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Physics and OptoelectronicsTaiyuan University of TechnologyTaiyuanPeople’s Republic of China
  2. 2.College of Physics and Electrical EngineeringAnyang Normal UniversityAnyangPeople’s Republic of China

Personalised recommendations