Advertisement

Applied Physics A

, 125:803 | Cite as

Comparative study of absorption and photoluminescent properties of organic solar cells based on P3HT:PCBM and P3HT:ITIC blends

  • Erkin ZakhidovEmail author
  • Mukhib Imomov
  • Vakhob Quvondikov
  • Sherzod Nematov
  • Ilkhom Tajibaev
  • Aziz Saparbaev
  • Irfan Ismail
  • Bilal Shahid
  • Renqiang Yang
Article
  • 71 Downloads

Abstract

We have studied the thin films of P3HT:PCBM and P3HT:ITIC blends as a prospective active layer for Organic Solar Cells by absorption, photoluminescence, and short-circuit current density–voltage characteristics. The potential estimation of structural changes in such photovoltaic devices is shown by employing the variations in absorption and photoluminescence spectra. The comparative analysis of key features of the absorption and photoluminescence spectra can be used as an indicator of their structural and photophysical properties.

Notes

Acknowledgements

EZ, MI, VQ, SN and IT are acknowledging the project OT-F2-05 of the basic research program of the Uzbekistan Academy of Sciences for supporting their researches.

References

  1. 1.
    P.A. Troshin, N.S.Sariciftci, in Supramolecular Chemistry: From Molecules to Nanomaterials, eds. by P.A. Gale, J.W. Steed (Wiley, New Jersey 2012), p. 2725Google Scholar
  2. 2.
    L. Duan, N.K. Elumalai, Y. Zhang, A. Uddin, Sol. Energy Mater. Sol. Cells. 193, 22 (2019)CrossRefGoogle Scholar
  3. 3.
    S. Ludwigs (ed.), P3HT Revisited-from Molecular Scale to Solar Cell Device (Springer, Berlin, 2014)Google Scholar
  4. 4.
    M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P.G. Etchegoin, Y. Kim, T.D. Anthopoulos, P.N. Stavrinou, D.C. Bradley, J. Nelson. Nat. Mater. 7, 158 (2008)CrossRefGoogle Scholar
  5. 5.
    A. Salleo, T.W. Chen, A.R. Vlkel, Y. Wu, P. Liu, B.S. Ong, R.A. Street, Phys. Rev. B. 70, 115311 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    J.W. Kiel, A.P.R. Eberle, M.E. Mackay, Phys. Rev. Lett. 10, 168701 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    W. Li, L. Yang, J.R. Tumbleston, L. Yan, H. Ade, W. You, Adv. Mater. 26, 4456 (2014)CrossRefGoogle Scholar
  8. 8.
    E.A. Katz, in Nanostructured Materials for Solar Energy Conversion, ed. by T. Soga (Elsevier, 2006), p. 361Google Scholar
  9. 9.
    G. Dennler, M.C. Scharber, C.J. Brabec, Adv. Mater. 21, 1323 (2009)CrossRefGoogle Scholar
  10. 10.
    V. Shrotriya, J. Ouyang, R.J. Tseng, G. Li, Y. Yang, Chem. Phys. Lett. 411, 138 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    J. Hou, O. Ingans, R.H. Friend, F. Gao, Nat. Mater. 17, 119 (2018)ADSCrossRefGoogle Scholar
  12. 12.
    J. Lee, S.J. Ko, M. Seifrid, H. Lee, C. McDowell, B.R. Luginbuhl, A. Karki, K. Cho, T.Q. Nguyen, G.C. Bazan, Adv. Energy Mater. 8, 1801209 (2018)CrossRefGoogle Scholar
  13. 13.
    S. Holliday et al., Nat. Commun. 7, 11585 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    Y.J. Cheng, S.H. Yang, C.S. Hsu, Chem. Rev. 109, 5868 (2009)CrossRefGoogle Scholar
  15. 15.
    Y. Qin, M.A. Uddin, Y. Chen, B. Jang, K. Zhao, Z. Zheng, R. Yu, T.J. Shin, H.Y. Woo, J. Hou. Adv. Mater. 28, 9416 (2016)CrossRefGoogle Scholar
  16. 16.
    H. Fu, Z. Wang, Y. Sun, Angew. Chem. Int. Ed.  https://doi.org/10.1002/anie.201806291 (2018)CrossRefGoogle Scholar
  17. 17.
    A.T. Kleinschmidt, S.E. Root, D.J. Lipomi, J. Mater. Chem. A 5, 11396 (2016)CrossRefGoogle Scholar
  18. 18.
    A.G. Dixon, R. Visvanathan, N.A. Clark, N. Stingelin, N. Kopidakis, S.E. Shaheen, J. Poly. Sci. B 56, 31 (2018)CrossRefGoogle Scholar
  19. 19.
    J.H. Lee, S. Yoshikawa, T. Sagawa, Sol. Energy Mater. Sol. Cells. 127, 111 (2014)CrossRefGoogle Scholar
  20. 20.
    P. Dallas, G. Rogers, B. Reid, R.A. Taylor, H. Shinohara, G.A.D. Briggs, K. Porfyrakis, Chem. Phys. 465, 28 (2016)CrossRefGoogle Scholar
  21. 21.
    E. Zakhidov, A. Kokhkharov, V. Kuvondikov, Sh Nematov, R. Nusretov, J. Korean Phys. Soc. 67, 1262 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    P.J. Brown, D.S. Thomas, A. Kohler, J.S. Wilson, J.S. Kim, C.M. Ramsdale, H. Sirringhaus, R.H. Friend, Phys. Rev. 67, 1 (2003)Google Scholar
  23. 23.
    N.M.B. Neto, M.D.R. Silva, P.T. Araujo, R.N. Sampaio, Adv. Mater. 30, 1705052 (2018)CrossRefGoogle Scholar
  24. 24.
    N.C. Nicolaidis, B.S. Routley, J.L. Holdsworth, W.J. Belcher, X. Zhou, P.C. Dastoor, J. Phys. Chem. C 115, 7801 (2011)CrossRefGoogle Scholar
  25. 25.
    E. Zakhidov, M. Zakhidova, A. Kokhkharov, A. Yarbekov, V. Kuvondikov, S. Nematov, A. Saparbayev, Turk. J. Biol. 39, 276 (2015)CrossRefGoogle Scholar
  26. 26.
    Q. Xu, C. Chang, W. Li, B. Guo, X. Guo, M. Zhang, Acta Phys. Chim. Sin. 35, 268 (2019)Google Scholar
  27. 27.
    N.D. Eastham, J.L. Logsdon, E.F. Manley, T.J. Aldrich, M.J. Leonardi, G. Wang, N.E. Powers-Riggs, R.M. Young, L.X. Chen, M.R. Wasielewski, F.S. Melkonyan, R.P.H. Chang, T.J. Marks, Adv. Mater. 30, 1704263 (2017)CrossRefGoogle Scholar
  28. 28.
    T. Wang, A.J. Pearson, D.G. Lidzey, R.A.L. Jones, Adv. Funct. Mater. 21, 1383 (2011)CrossRefGoogle Scholar
  29. 29.
    X. Yang, A. Uddin, Renew. Sustain. Energy Rev. 30, 324 (2014)CrossRefGoogle Scholar
  30. 30.
    F. Otieno, B.K. Mutuma, M. Airo, K. Ranganathan, R. Erasmus, N. Coville, D. Wamwangi, Thin Solid Films. 625, 62 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    Y. Lin, J. Wang, Z.G. Zhang, H. Bai, Y. Li, D. Zhu, X. Zhan, Adv. Mater. 27, 1170 (2015)CrossRefGoogle Scholar
  32. 32.
    F. Yang, D. Qian, A.H. Balawi, Y. Wu, W. Ma, F. Laquai, Z. Tang, F. Zhang, W. Li, Phys. Chem. Chem. Phys. 19, 23990 (2017)CrossRefGoogle Scholar
  33. 33.
    Q. Liang, J. Han, C. Song, X. Yu, D.M. Smilgies, K. Zhao, J. Liu, Y. Han, J. Mater. Chem A 6, 15610 (2018)CrossRefGoogle Scholar
  34. 34.
    E.A. Zakhidov, M.A. Zakhidova, A.M. Kokhkharov, S.Q. Nematov, R.A. Nusretov, V.O. Kuvondikov, J. Appl. Spec. 85, 73 (2018)ADSCrossRefGoogle Scholar
  35. 35.
    S.P. Sibley, S.M. Argentine, A.H. Francis, Chem. Phys. Lett. 188, 187 (1992)ADSCrossRefGoogle Scholar
  36. 36.
    A.L. Ayzner, D.D. Wanger, C.J. Tassone, S.H. Tolbert, B.J. Schwartz, J. Phys. Chem. C 112, 18711 (2008)CrossRefGoogle Scholar
  37. 37.
    P.T. Huang, P.F. Huang, Y.J. Horng, C.P. Yang, J. Chin. Chem. Soc. 60, 467 (2013)CrossRefGoogle Scholar
  38. 38.
    A. Mahmood, A. Tang, X. Wang, E. Zhou, Phys. Chem. Chem. Phys. 21, 2128 (2019)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Erkin Zakhidov
    • 1
    Email author
  • Mukhib Imomov
    • 1
  • Vakhob Quvondikov
    • 1
  • Sherzod Nematov
    • 1
  • Ilkhom Tajibaev
    • 1
  • Aziz Saparbaev
    • 2
  • Irfan Ismail
    • 3
  • Bilal Shahid
    • 2
  • Renqiang Yang
    • 2
  1. 1.Institute of Ion-Plasma and Laser Technologies, Uzbekistan Academy of SciencesTashkentUzbekistan
  2. 2.Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
  3. 3.Suzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of SciencesSuzhouChina

Personalised recommendations