Applied Physics A

, 125:800 | Cite as

The structural, magnetic, electronic, and mechanical properties of the full Heusler alloys Ti2CoTl1−xPbx (x = 0.00, 0.25, 0.50, 0.75, 1.00)

  • Yang ZhouEmail author
  • Jian-Min Zhang


We investigate the structural, magnetic, electronic, and mechanical properties of the full Heusler alloys (FHAs) Ti2CoTl1−xPbx (x = 0.00, 0.25, 0.50, 0.75, 1.00) using first-principles calculations. The FHAs Ti2CoTl1−xPbx have the half-metallic characters within lattice constant regions 5.799–6.707, 5.749–6.821, 5.749–6.982, 5.789–7.115, and 5.976–6.943 Å for x = 0.00, 0.25, 0.50, 0.75, and 1.00, respectively. The negative formation energy, positive cohesion energy, and higher than room temperature Curie temperature indicate that the FHAs Ti2CoTl1−xPbx are thermodynamically stable and can be used in spintronics and magnetoelectronics. The total magnetic moment per formula unit \(\mu_{\text{t}}\) of the FHAs Ti2CoTl1−xPbx satisfies the Slater–Pauling rule \(\mu_{\text{t}} = Z{}_{\text{t}} - 18\), where \(Z_{\text{t}}\) represents the total number of valence electrons per formula unit. With increasing Pb atom concentration x, the band structures in both spin-up and spin-down channels move toward low energy region, but the spin-down indirect band gap \(E_{g}^{ \downarrow }\) increases. In addition, the calculated elastic constants and elastic modulus indicate that the FHAs Ti2CoTl1−xPbx have mechanical stability, as well as ductility and strong resistance to fracture and plastic deformation.



  1. 1.
    R. Weht, W.E. Pickett, Half-metallic ferrimagnetism in Mn2VAl. Phys. Rev. B 60, 13006–13010 (1999)ADSGoogle Scholar
  2. 2.
    H.C. Kandpal, G.H. Fecher, C. Felser, Calculated electronic and magnetic properties of the half-metallic, transition metal based Heusler compounds. J. Phys. D Appl. Phys. 40, 1507–1523 (2007)ADSGoogle Scholar
  3. 3.
    S.H. Wang, H.M. Cheng, R.J. Wu, W.H. Chao, Structural and thermoelectric properties of HfNiSn half-Heusler thin films. Thin Solid Films 518, 5901–5904 (2010)ADSGoogle Scholar
  4. 4.
    M. Mikami, T. Kamiya, K. Kobayashi, Microstructure and thermoelectric properties of Heusler Fe2VAl thin-films. Thin Solid Films 518, 2796–2800 (2010)ADSGoogle Scholar
  5. 5.
    J. Li, H.Y. Liu, Z.D. Zhang, S.L. Zhang, X.W. Xu, Obtaining half-metallic ferrimagnetism and antiferromagnetism by doping Mn and Fe for DO3-type Heusler compound Cr3Si. J. Alloy. Compd. 597, 8–14 (2014)Google Scholar
  6. 6.
    F. Heusler, Über magnetische manganlegierungen. V. Dtsch. Phys. Ges. 19, 219–223 (1903)Google Scholar
  7. 7.
    A.J. Bradley, J.W. Rodgers, The crystal structure of the Heusler alloys. P. Roy. Soc. Lond. A. Mat 144, 340–359 (1934)ADSGoogle Scholar
  8. 8.
    A.P. Klyucharev, Structure and magnetic properties of Heusler-like alloys. J. Exp. Theo. Phys. 12, 1501–1511 (1939)Google Scholar
  9. 9.
    D.P. Oxley, R.S. Tebble, K.C. Williams, Heusler alloys. J. Appl. Phys. 34, 1362–1364 (1963)ADSGoogle Scholar
  10. 10.
    K. Endo, T. Ohoyama, R. Kimura, On the magnetic moment of Mn in aluminum Heusler alloy. J. Phys. Soc. Jpn. 19, 1494–1495 (1964)ADSGoogle Scholar
  11. 11.
    D.J.W. Geldart, P. Ganguly, Hyperfine fields and Curie temperatures of the Heusler alloys Cu2MnAl, Cu2MnIn, and Cu2MnSn. Phys. Rev. B 1, 3101–3108 (1970)ADSGoogle Scholar
  12. 12.
    J. Schaf, E.R. Fraga, C.F. Zawislak, Hyperfine magnetic fields on Cd impurity in the Pd2MnIn1−xSnx and Pd2MnSn1−ySby heusler alloys. J. Magn. Magn. Mater. 8, 297–302 (1978)ADSGoogle Scholar
  13. 13.
    N.G. Fenander, L. Wiktorin, H.P. Myers, The low temperature specific heat of the Heusler alloys Cu2MnAl and Cu2MnSn. J. Phys. Chem. Solids 29, 1973–1976 (1968)ADSGoogle Scholar
  14. 14.
    I. Galanakis, P.H. Dederichs, N. Papanikolaou, Origin and properties of the gap in the half-ferromagnetic Heusler alloys. Phys. Rev. B 66, 134428 (2002)ADSGoogle Scholar
  15. 15.
    R.A. de Groot, F.M. Mueller, P.G. Van Engen, K.H.J. Buschow, New class of materials: half-metallic ferromagnets. Phys. Rev. Lett. 50, 2024–2027 (1983)ADSGoogle Scholar
  16. 16.
    M.I. Katsnelson, V.Y. Irkhin, L. Chioncel, A.I. Lichtenstein, R.A. de Groot, Half-metallic ferromagnets: from band structure to many-body effects. Rev. Mod. Phys. 80, 315–378 (2008)ADSGoogle Scholar
  17. 17.
    J. Dho, S. Ki, A.F. Gubkin, J.M.S. Park, E.A. Sherstobitov, A neutron diffraction study of half-metallic ferromagnet CrO2 nanorods. Solid State Commun. 150, 86–90 (2010)ADSGoogle Scholar
  18. 18.
    S. Soeya, J. Hayakawa, H. Takahashi, K. Ito, C. Yamamoto, A. Kida, H. Asano, M. Matsui, Development of half-metallic ultrathin Fe3O4 films for spin-transport devices. Appl. Phys. Lett. 80, 823–825 (2002)ADSGoogle Scholar
  19. 19.
    Z.H. Zhu, X.H. Yan, Half-metallic properties of perovskite BaCrO3 and BaCr0.5Ti0.5O3 superlattice: LSDA + U calculations. J. Appl. Phys. 106, 023713 (2009)ADSGoogle Scholar
  20. 20.
    K.L. Kobayashi, T. Kimura, H. Sawada, K. Terakura, Y. Tokura, Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature 395, 677–680 (1998)ADSGoogle Scholar
  21. 21.
    P.K. de Boer, H. van Leuken, R.A. de Groot, T. Rojo, G.E. Barberis, Electronic structure of La0.5Ca0.5MnO3. Solid State Commun. 102, 621–626 (1997)ADSGoogle Scholar
  22. 22.
    A. Djefal, S. Amari, L. Beldi, H. Bendaoud, R.F.L. Evans, B. Bouhafs, Half-metallic ferromagnetism in double perovskite Ca2CoMoO6 compound: DFT + U calculations. Spin 7, 1750009 (2017)ADSGoogle Scholar
  23. 23.
    Y. Han, R. Khenata, T. Li, L. Wang, X. Wang, Search for a new member of parabolic-like spin-gapless semiconductors: the case of diamond-like quaternary compound CuMn2InSe4. Results Phys. 10, 301–303 (2018)ADSGoogle Scholar
  24. 24.
    R. Podloucky, Electronic structure of CrAs and FeAs. J. Magn. Magn. Mater. 43, 291–296 (1984)ADSGoogle Scholar
  25. 25.
    M. Zhang, H.N. Hu, Z.H. Liu, G.D. Liu, Y.T. Cui, G.H. Wu, Half-metallic ferromagnetism in the zinc-blende MPo (M = V, Cr, and Mn). J. Magn. Magn. Mater. 270, 32–37 (2004)ADSGoogle Scholar
  26. 26.
    H. Benaissa, S. Benatmane, S. Amari, K.O. Obodo, L. Beldi, H. Bendaoud, B. Bouhafs, Ferromagnetism in RaBi with zinc-blende and wurtzite structures: ab initio prediction. Spin 8, 1850008 (2018)ADSGoogle Scholar
  27. 27.
    N. Abbouni, S. Amari, H. Sadouki, A. Belkadi, Y. Zaoui, K.O. Obodo, L. Beldi, B. Bouhafs, Ab-initio prediction of intrinsic half-metallicity in binary alkali-metal chalcogenides: KX (X = S, Se and Te). Spin 8, 1850020 (2018)ADSGoogle Scholar
  28. 28.
    A. Belkadi, K.O. Obodo, Y. Zaoui, H. Moulkhalwa, L. Beldi, B. Bouhafs, First-principles studies of structural, electronic and magnetic properties of the CrS, CrSe and CrTe compounds. Spin 8, 1850019 (2018)ADSGoogle Scholar
  29. 29.
    Y. Han, M. Wu, M. Kuang, T. Yang, X. Chen, X. Wang, All-d-metal equiatomic quaternary Heusler hypothetical alloys ZnCdTMn (T = Fe, Ru, Os, Rh, Ir, Ni, Pd, Pt): a first-principle investigation of electronic structures, magnetism, and possible martensitic transformations. Results Phys. 11, 1134–1141 (2018)ADSGoogle Scholar
  30. 30.
    Y. Li, G.D. Liu, X.T. Wang, E.K. Liu, X.K. Xi, W.H. Wang, G.H. Wu, L.Y. Wang, X.F. Dai, First-principles study on electronic structure, magnetism and half-metallicity of the NbCoCrAl and NbRhCrAl compounds. Results Phys. 7, 2248–2254 (2017)ADSGoogle Scholar
  31. 31.
    E. Haque, M.A. Hossain, First-principles study of elastic, electronic, thermodynamic, and thermoelectric transport properties of TaCoSn. Results Phys. 10, 458–465 (2018)ADSGoogle Scholar
  32. 32.
    A. Anjami, A. Boochani, S.M. Elahi, H. Akbari, Ab-initio study of mechanical, half-metallic and optical properties of Mn2ZrX (X = Ge, Si) compounds. Results Phys. 7, 3522–3529 (2017)ADSGoogle Scholar
  33. 33.
    Y. Han, Z. Chen, M. Kuang, Z. Liu, X. Wang, X. Wang, 171 Scandium-based full Heusler compounds: a comprehensive study of competition between XA and L21 atomic ordering. Results Phys. 12, 435–446 (2019)ADSGoogle Scholar
  34. 34.
    O. Baraka, S. Amari, A. Yakoubi, First-principles calculations of structural, electronic, magnetic and elastic properties of Heusler alloys Ru2CoZ (Z = Si, Ge and Sn). Spin 8, 1850009 (2018)ADSGoogle Scholar
  35. 35.
    D. Orgassa, H. Fujiwara, T.C. Schulthess, W.H. Butler, First-principles calculation of the effect of atomic disorder on the electronic structure of the half-metallic ferromagnet NiMnSb. Phys. Rev. B 60, 13237–13240 (1999)ADSGoogle Scholar
  36. 36.
    X.H. Kang, J.M. Zhang, The structural, electronic and magnetic properties of a novel quaternary Heusler alloy TiZrCoSn. J. Phys. Chem. Solids 105, 9–15 (2017)ADSGoogle Scholar
  37. 37.
    I. Galanakis, K. Özdoğan, E. Şaşıoğlu, Spin-filter and spin-gapless semiconductors: the case of Heusler compounds. AIP Adv. 6, 055606 (2016)ADSGoogle Scholar
  38. 38.
    S. Picozzi, A. Continenza, A.J. Freeman, Role of Mn antisite defects on half-metallicity in Co2MnSi Heusler alloy. J. Magn. Magn. Mater. 272–276, 315–316 (2004)ADSGoogle Scholar
  39. 39.
    S. Picozzi, A. Continenza, Role of structural defects on the half-metallic character of Co2MnGe and Co2MnSi Heusler alloys. Phys. Rev. B 69, 094423 (2004)ADSGoogle Scholar
  40. 40.
    Y. Miura, K. Nagao, M. Shirai, Atomic disorder effects on half-metallicity of the full-Heusler alloys Co2(Cr1−xFex)Al: a first-principles study. Phys. Rev. B 69, 144413 (2004)ADSGoogle Scholar
  41. 41.
    M. Kogachi, T. Fujiwara, S. Kikuchi, Atomic disorder and magnetic property in Co-based Heusler alloys Co2MnZ (Z = Si, Ge, Sn). J. Alloy. Compd. 475, 723–729 (2009)Google Scholar
  42. 42.
    X.P. Wei, Y.D. Chu, J.B. Deng, Effect of Ni and Sn doping on the half-metallicity of full Heusler Ti2CoIn alloy. J. Magn. Magn. Mater. 354, 345–348 (2014)ADSGoogle Scholar
  43. 43.
    J.T. Song, J.M. Zhang, The structural, electronic, magnetic and elastic properties of Ge doped half-Heusler compounds Mn2GexAs1−x (x = 0.25, 0.50, 0.75, 1.00). J. Magn. Magn. Mater. 460, 461–470 (2018)ADSGoogle Scholar
  44. 44.
    G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993)ADSGoogle Scholar
  45. 45.
    G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid–metal–amorphous–semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994)ADSGoogle Scholar
  46. 46.
    G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)ADSGoogle Scholar
  47. 47.
    G. Kresse, J. Furthmüller, Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996)Google Scholar
  48. 48.
    G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999)ADSGoogle Scholar
  49. 49.
    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)ADSGoogle Scholar
  50. 50.
    P.L. Yan, J.M. Zhang, K.W. Xu, The structural, electronic and magnetic properties of quaternary Heusler alloy TiZrCoIn. Solid State Commun. 231–232, 64–67 (2016)ADSGoogle Scholar
  51. 51.
    Q. Gao, H.H. Xie, L. Li, G. Lei, J.B. Deng, X.R. Hu, First-principle study on some new spin-gapless semiconductors: the Zr-based quaternary Heusler alloys. Superlattices Microstruct. 85, 536–542 (2015)ADSGoogle Scholar
  52. 52.
    H.H. Xie, Q. Gao, L. Li, G. Lei, G.Y. Mao, X.R. Hu, J.B. Deng, First-principles study of four quaternary Heusler alloys ZrMnVZ and ZrCoFeZ (Z = Si, Ge). Comput. Mater. Sci. 103, 52–55 (2015)Google Scholar
  53. 53.
    N. Kervan, S. Kervan, O. Canko, M. Atiş, F. Taşkın, Half-metallic ferrimagnetism in the Mn2NbAl full-Heusler compound: a first-principles study. J. Supercond. Nov. Magn. 29, 187–192 (2016)Google Scholar
  54. 54.
    K. Özdoğan, E. Şaşıoğlu, I. Galanakis, Slater–Pauling behavior in LiMgPdSn-type multifunctional quaternary Heusler materials: half-metallicity, spin-gapless and magnetic semiconductors. J. Appl. Phys. 113, 193903 (2013)ADSGoogle Scholar
  55. 55.
    S. Skaftouros, K. Özdoğan, E. Şaşıoğlu, I. Galanakis, Generalized Slater–Pauling rule for the inverse Heusler compounds. Phys. Rev. B 87, 024420 (2013)ADSGoogle Scholar
  56. 56.
    I. Galanakis, P.H. Dederichs, N. Papanikolaou, Slater–Pauling behavior and origin of the half-metallicity of the full-Heusler alloys. Phys. Rev. B 66, 174429 (2002)ADSGoogle Scholar
  57. 57.
    F. Mouhat, F.X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 90, 224104 (2014)ADSGoogle Scholar
  58. 58.
    W. Voigt, Lehrbuch der Kristallphysik (Taubner, Leipzig, 1928)zbMATHGoogle Scholar
  59. 59.
    R. Hill, The Elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A 65, 349–354 (1952)ADSGoogle Scholar
  60. 60.
    A. Reuss, Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Z. Angew. J. Appl. Math. Mech. 9, 49–58 (1929)zbMATHGoogle Scholar
  61. 61.
    F. Birch, Finite elastic strain of cubic crystals. Phys. Rev. 71, 809–824 (1947)ADSzbMATHGoogle Scholar
  62. 62.
    J. Haines, J.M. Léger, G. Bocquillon, Synthesis and design of superhard materials. Annu. Rev. Mater. Res. 31, 1–23 (2001)ADSGoogle Scholar
  63. 63.
    P.L. Yan, J.M. Zhang, B. Zhou, K.W. Xu, The structural, electronic, magnetic and mechanical properties of quaternary Heusler alloys ZrTiCrZ (Z = Al, Ga, In, Si, Ge, Sn): a first-principles study. J. Phys. D Appl. Phys. 49, 255002 (2016)ADSGoogle Scholar
  64. 64.
    S.F. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45, 823–843 (1954)Google Scholar
  65. 65.
    P. Ravindran, L. Fast, P.A. Korzhayi, B. Johansson, Density functional theory for calculation of elastic properties of orthorhombic crystals: application to TiSi2. J. Appl. Phys. 84, 4891–4904 (1998)ADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Physics and Information TechnologyShaanxi Normal UniversityXianPeople’s Republic of China

Personalised recommendations