Applied Physics A

, 125:794 | Cite as

Role of low substrate temperature deposition on Co–Fe thin films

  • Gizem Durak YüzüakEmail author
  • E. Yüzüak
  • V. Nevruzoğlu
  • İ. Dinçer


This paper presents the role of the conventional and Soliton wave model deposition at low substrate temperature (300–100 K) on the structural, electric and magnetic properties of Co35Fe65 thin films deposited by thermal evaporation using bulk polycrystalline Co35Fe65 alloy. On account of obtaining superior quality magnetic thin films without any high temperature growth processes or heat treatment, the Soliton wave growth model at suitable low temperature range is used. X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques are employed to investigate the various structural properties. Morphological and structural analyses of entire 30 nm Co35Fe65 thin films deposited on Si (100) substrate reveal that the stoichiometry is preserved over the whole temperature deposition and BCC crystalline formed with (110) texture. To attain the electrical and magnetic properties, resistivity and vibrating-sample magnetometer (VSM) measurements are evaluated. Soliton wave model deposition significantly increased magnetic anisotropy constant K1 = 0.105 Merg/cm3, MR/MS = 0.83 and coercivity HC = 272 Oe at 300 K when the compared to conventional deposition range in this work (K1 = 0.014 Merg/cm3, MR/MS = 0.6 and HC = 50 Oe). Growth with novel approach of Co35Fe65 thin films highlights the reasonable low coercivity, the high saturation magnetization, the high magnetic anisotropy and the low electrical resistivity values, with tailored grain size, make them feasible to use in magnetic sensor technology in the near future.



G.D.Y. would like to thank the Scientific and Technological Research Council of Turkey (TUBITAK) BIDEB—2218—The National Postdoctoral Research Scholarship Program.


  1. 1.
    P. Ripka, Magnetic Sensors and Magnetometers (Artech House Publishers, Norwood, 2001)Google Scholar
  2. 2.
    Y.W. Zhao, X.K. Zhang, J.Q. Xiao, Adv. Mater. (2005). CrossRefGoogle Scholar
  3. 3.
    C.L. Platt, A.E. Berkowitz, D.J. Smith, M.R. McCartney, J. Appl. Phys. (2000). CrossRefGoogle Scholar
  4. 4.
    L. Bessais, K. Zehani, R. Bez, J. Moscovici, H. Lassri, E.K. Hill, N. Mliki, TMS 2014 Annual Meeting Supplement Proceedings (Wiley, New York, 2014), pp. 15–22CrossRefGoogle Scholar
  5. 5.
    D.H. Manh, D.K. Tung, D.N.H. Nam, L.V. Hong, P.T. Phong, N.X. Phuc, IEEE Trans. Magn. (2014). CrossRefGoogle Scholar
  6. 6.
    R.M. Bozorth, Ferromagnetism (D. Van. Nostrand Co., Inc., New York, 1951), p. 194Google Scholar
  7. 7.
    B. Balamurugan, B. Das, W.Y. Zhang, R. Skomski, D.J. Sellmyer, J. Phys. Condens. Matter. (2014). CrossRefGoogle Scholar
  8. 8.
    S. Liedtke, C. Grüner, J.W. Gerlach, B. Rauschenbach, Beilstein J. Nanotechnol. (2018). CrossRefGoogle Scholar
  9. 9.
    A. Ghemes, O. Dragos-Pinzaru, H. Chiriac, N. Lupu, M. Grigoras, D. Shore, B. Stadler, I. Tabakovic, J Electrochem. Soc (2017). CrossRefGoogle Scholar
  10. 10.
    J.W. Cai, O. Kitakami, Y. Shimada, J. Phys. D (1995). CrossRefGoogle Scholar
  11. 11.
    M. Senda, O. Ishii, I.E.E.E. Trans, Magn. (1994). CrossRefGoogle Scholar
  12. 12.
    T. Thomson, P.C. Riedi, C.L. Platt, A.E. Berkowitz, IEEE Trans. Magn. (1998). CrossRefGoogle Scholar
  13. 13.
  14. 14.
    D.L. Chambers, C.T. Wan, G.T. Susi, K.A. Taylor, Surf. Coat. Technol. (1988). CrossRefGoogle Scholar
  15. 15.
    D.L. Chambers, C.T. Wan, G.T. Susi, K.A. Taylor, J Vac Sci Technol. A 7, 1305 (1989)ADSCrossRefGoogle Scholar
  16. 16.
    B.A. Movchan, A.V. Demchishin, Fiz. Metal Metalloved 28, 653 (1969)Google Scholar
  17. 17.
    A.P. Belyaev, V.P. Rubets, Semiconductors (2001). CrossRefGoogle Scholar
  18. 18.
    S.A. Kukushkin, A.V. Osipov, Phys. Solid State 36, 799 (1994)ADSGoogle Scholar
  19. 19.
    A.P. Belyaev, V.P. Rubets, I.P. Kalinkin, Mater. Phys. Mech. 6, 58 (2003)Google Scholar
  20. 20.
    H. Klug, L. Alexander, X-ray Diffraction Procedures (Wiley, New York, 1962), p. 125zbMATHGoogle Scholar
  21. 21.
    J.P. Eberhart, Analyse Structurale et Chimiques des Materiaux (Bordas, Paris, 1989)Google Scholar
  22. 22.
    N. Redjdal, H. Salah, T. Hauet, H. Menari, S.M. Cherif, N. Gabouze, M. Azzaz, Thin Solid Films (2014). CrossRefGoogle Scholar
  23. 23.
    M. Mebarki, A. Layadi, M.R. Khelladi, A. Azizi, N. Tiercelin, V. Preobrazhensky, P. Pernod, Metal Mater. Trans. A (2016). CrossRefGoogle Scholar
  24. 24.
    M. Mebarki, A. Layadi, M.R. Khelladi, A. Azizi, N. Tiercelin, V. Preobrazhensky, P. Pernod, J. Mater. Sci. (2017). CrossRefGoogle Scholar
  25. 25.
    C.H. Lin, W.H. Chen, J.S. Tsay, I.T. Hong, C.H. Chiu, H.S. Huang, Thin Solid Films (2011). CrossRefGoogle Scholar
  26. 26.
    Y.P. Wu, G.C. Han, L.B. Kong, J. Magn. Magn. Mater. (2010). CrossRefGoogle Scholar
  27. 27.
    E. Kneller, Ferromagnetism (Springer, Berlin, 1962)CrossRefGoogle Scholar
  28. 28.
    H. Hausera, D.C. Jiles, Y. Melikhov, L. Li, R. Grössinger, J. Magn. Magn. Mater. 300, 273 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    L. Kumar, P. Kumar, S.K. Srivastava, M. Kar, J. Supercond. Nov. Magn. (2014). CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Gizem Durak Yüzüak
    • 1
    Email author
  • E. Yüzüak
    • 2
  • V. Nevruzoğlu
    • 1
  • İ. Dinçer
    • 3
  1. 1.Department of Energy Systems Engineering, Faculty of EngineeringRecep Tayyip Erdoğan UniversityRizeTurkey
  2. 2.Department of Material Science and Nanotechnology Engineering, Faculty of EngineeringRecep Tayyip Erdoğan UniversityRizeTurkey
  3. 3.Department of Physical Engineering, Faculty of EngineeringAnkara UniversityAnkaraTurkey

Personalised recommendations