Applied Physics A

, 125:799 | Cite as

Synergetic implementation of magnetic and electrical characteristics of rGO/Cu0.3Mn0.7Fe2O4 nanocomposites

  • E. H. El-KhawasEmail author
  • A . A. Azab


In this work, a reduced graphene oxide (0, 10, 30, 50 and 70 wt%) functionalized with Cu0.3Mn0.7Fe2O4 (CMFO) nanocomposites (rGO/CMFO) was successfully prepared by two techniques, namely modified Hummers (rGO) and sol–gel auto-ignition techniques (CMFO). The structure, morphology, magnetic and electrical properties of obtained nanocomposites have been examined using X-ray diffraction technique, Raman radiation spectroscopy, high-resolution transmission electron microscopy and vibrating sample magnetometer. The increase of rGO decreases the particle size of CMFO. It also results in a decrease in the saturation magnetization of the composites from 37.96 to 13.29 emu/g. The coercivity of composites elucidated higher values than those of the pristine composite due to interface interaction between CMFO and rGO. Colossal enhancement in electrical conductivity, dielectric constant and dielectric loss occurred with increasing the rGO content. These results indicate that rGO/CMFO composites can be a good candidate for many electronic applications such as spintronic magnetic storage, high-energy storage device and microwave absorption material.



  1. 1.
    M.H. Abdellatif, G.M. El-Komy, A.A. Azab, Magnetic characterization of rare earth doped spinel ferrite. J. Magn. Magn. Mater. 442, 445–452 (2017). ADSCrossRefGoogle Scholar
  2. 2.
    M.A. Ahmed, A.A. Azab, E.H. El-Khawas, E.A. EL Bast, Characterization and transport properties of mixed ferrite system Mn1−x Cux Fe2O4; 0.0 ≤ x ≤ 0.7. Synth. React. Inorganic, Met. Nano-Metal Chem. 46, 376–384 (2016). CrossRefGoogle Scholar
  3. 3.
    P. Chavan, L.R. Naik, Effect of Bi3+ ions on the humidity sensitive properties of copper ferrite nanoparticles. Sens. Actuators B Chem. 272, 28–33 (2018). CrossRefGoogle Scholar
  4. 4.
    K. Muthukumar, D.S. Lakshmi, S.D. Acharya, S. Natarajan, A. Mukherjee, H.C. Bajaj, Solvothermal synthesis of magnetic copper ferrite nano sheet and its antimicrobial studies. Mater. Chem. Phys. 209, 172–179 (2018). CrossRefGoogle Scholar
  5. 5.
    G. Venugopal, K. Krishnamoorthy, S.J. Kim, An investigation on high-temperature electrical transport properties of graphene-oxide nano-thin films. Appl. Surf. Sci. 280, 903–908 (2013). ADSCrossRefGoogle Scholar
  6. 6.
    D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008). ADSCrossRefGoogle Scholar
  7. 7.
    A.K. Geim, Graphene: status and prospects. Science 324, 1530–1534 (2009). ADSCrossRefGoogle Scholar
  8. 8.
    G. Eda, M. Chhowalla, Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv. Mater. 22, 2392–2415 (2010). CrossRefGoogle Scholar
  9. 9.
    H. Chen, M.B. Müller, K.J. Gilmore, G.G. Wallace, D. Li, Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv. Mater. 20, 3557–3561 (2008). CrossRefGoogle Scholar
  10. 10.
    A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008). ADSCrossRefGoogle Scholar
  11. 11.
    J.K. Wassei, R.B. Kaner, Graphene, a promising transparent conductor. Mater. Today. 13, 52–59 (2010). CrossRefGoogle Scholar
  12. 12.
    G. Venugopal, S.-J. Kim, Temperature dependent transfer characteristics of graphene field effect transistors fabricated using photolithography. Curr. Appl. Phys. 11, S381–S384 (2011). ADSCrossRefGoogle Scholar
  13. 13.
    W. Hong, H. Bai, Y. Xu, Z. Yao, Z. Gu, G. Shi, Preparation of gold nanoparticle/graphene composites with controlled weight contents and their application in biosensors. J. Phys. Chem. C. 114, 1822–1826 (2010). CrossRefGoogle Scholar
  14. 14.
    Y. Xu, W. Hong, H. Bai, C. Li, G. Shi, Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon N. Y. 47, 3538–3543 (2009). CrossRefGoogle Scholar
  15. 15.
    S. Thangavel, M. Elayaperumal, G. Venugopal, Synthesis and properties of tungsten oxide and reduced graphene oxide nanocomposites. Mater. Express. 2, 327–334 (2012). CrossRefGoogle Scholar
  16. 16.
    F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007). ADSCrossRefGoogle Scholar
  17. 17.
    E. Yoo, T. Okata, T. Akita, M. Kohyama, J. Nakamura, I. Honma, Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Lett. 9, 2255–2259 (2009). ADSCrossRefGoogle Scholar
  18. 18.
    K. Chakraborty, S. Chakrabarty, T. Pal, S. Ghosh, Synergistic effect of zinc selenide-reduced graphene oxide towards enhanced solar light-responsive photocurrent generation and photocatalytic 4-nitrophenol degradation. New J. Chem. 41, 4662–4671 (2017). CrossRefGoogle Scholar
  19. 19.
    G.Z. Kyzas, E.A. Deliyanni, K.A. Matis, Graphene oxide and its application as an adsorbent for wastewater treatment. J. Chem. Technol. Biotechnol. 89, 196–205 (2014). CrossRefGoogle Scholar
  20. 20.
    J. Zhu, M. Chen, H. Qu, X. Zhang, H. Wei, Z. Luo, H.A. Colorado, S. Wei, Z. Guo, Interfacial polymerized polyaniline/graphite oxide nanocomposites toward electrochemical energy storage. Polymer (Guildf). 53, 5953–5964 (2012). CrossRefGoogle Scholar
  21. 21.
    C. Chung, Y.-K. Kim, D. Shin, S.-R. Ryoo, B.H. Hong, D.-H. Min, Biomedical applications of graphene and graphene oxide. Acc. Chem. Res. 46, 2211–2224 (2013). CrossRefGoogle Scholar
  22. 22.
    D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010). CrossRefGoogle Scholar
  23. 23.
    A. Rasheed, M. Mahmood, U. Ali, M. Shahid, I. Shakir, S. Haider, M.A. Khan, M.F. Warsi, Zrx Co0.8x Ni0.2x Fe2O4-graphene nanocomposite for enhanced structural, dielectric and visible light photocatalytic applications. Ceram. Int. 42(2016), 15747–15755 (2016). CrossRefGoogle Scholar
  24. 24.
    R. Shu, J. Zhang, Y. Wu, Z. Wan, M. Zheng, Facile design of nitrogen-doped reduced graphene oxide/zinc ferrite hybrid nanocomposites with excellent microwave absorption in the X-band. Mater. Lett. 255, 126549 (2019). CrossRefGoogle Scholar
  25. 25.
    X. Zhou, D. Chuai, D. Zhu, Electrospun synthesis of reduced graphene oxide (RGO)/NiZn ferrite nanocomposites for excellent microwave absorption properties. J. Supercond. Nov. Magn. 32, 2687–2697 (2019). CrossRefGoogle Scholar
  26. 26.
    M.H. Abdellatif, A.A. Azab, Fractal growth of ferrite nanoparticles prepared by citrate-gel auto-combustion method. Silicon. 10, 1991–1997 (2018). CrossRefGoogle Scholar
  27. 27.
    M.A. Ahmed, H.H. Afify, I.K. El Zawawia, A.A. Azab, Novel structural and magnetic properties of Mg doped copper nanoferrites prepared by conventional and wet methods. J. Magn. Magn. Mater. 324, 2199–2204 (2012). ADSCrossRefGoogle Scholar
  28. 28.
    A. Poniatowska, M. Trzaskowski, T. Ciach, Production and properties of top-down and bottom-up graphene oxide. Colloids Surf. A Physicochem. Eng. Asp. 561, 315–324 (2019). CrossRefGoogle Scholar
  29. 29.
    R. Yuan, J. Yuan, Y. Wu, P. Ju, L. Ji, H. Li, L. Chen, H. Zhou, J. Chen, Graphene oxide-monohydrated manganese phosphate composites: Preparation via modified Hummers method. Colloids Surf. A Physicochem. Eng. Asp. 547, 56–63 (2018). CrossRefGoogle Scholar
  30. 30.
    M.-H. Tsai, I.-H. Tseng, Y.-F. Liao, J.-C. Chiang, Transparent polyimide nanocomposites with improved moisture barrier using graphene. Polym. Int. 62, 1302–1309 (2013). CrossRefGoogle Scholar
  31. 31.
    D. Chen, H. Zhu, T. Liu, In situ thermal preparation of polyimide nanocomposite films containing functionalized graphene sheets. ACS Appl. Mater. Interfaces. 2, 3702–3708 (2010). CrossRefGoogle Scholar
  32. 32.
    Z. Yang, Y. Wan, G. Xiong, D. Li, Q. Li, C. Ma, R. Guo, H. Luo, Facile synthesis of ZnFe2O4/reduced graphene oxide nanohybrids for enhanced microwave absorption properties. Mater. Res. Bull. 61, 292–297 (2015). CrossRefGoogle Scholar
  33. 33.
    N. Wu, H. Lv, J. Liu, Y. Liu, S. Wang, W. Liu, Improved electromagnetic wave absorption of Co nanoparticles decorated carbon nanotubes derived from synergistic magnetic and dielectric losses. Phys. Chem. Chem. Phys. 18, 31542–31550 (2016). CrossRefGoogle Scholar
  34. 34.
    L. Lin, H. Xing, R. Shu, L. Wang, X. Ji, D. Tan, Y. Gan, Preparation and microwave absorption properties of multi-walled carbon nanotubes decorated with Ni-doped SnO 2 nanocrystals. RSC Adv. 5, 94539–94550 (2015). CrossRefGoogle Scholar
  35. 35.
    Z. Li, X. Li, Y. Zong, G. Tan, Y. Sun, Y. Lan, M. He, Z. Ren, X. Zheng, Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers. Carbon N. Y. 115, 493–502 (2017). CrossRefGoogle Scholar
  36. 36.
    F. Tuinstra, J.L. Koenig, Raman spectrum of graphite. J. Chem. Phys. 53, 1126–1130 (1970). ADSCrossRefGoogle Scholar
  37. 37.
    N.J. Bell, Y.H. Ng, A. Du, H. Coster, S.C. Smith, R. Amal, Understanding the enhancement in photoelectrochemical properties of photocatalytically prepared TiO2-reduced graphene oxide composite. J. Phys. Chem. C. 115, 6004–6009 (2011). CrossRefGoogle Scholar
  38. 38.
    Y. Li, R. Yi, A. Yan, L. Deng, K. Zhou, X. Liu, Facile synthesis and properties of ZnFe2O4 and ZnFe2O4/polypyrrole core-shell nanoparticles. Solid State Sci. 11, 1319–1324 (2009). ADSCrossRefGoogle Scholar
  39. 39.
    A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B. 61, 14095–14107 (2000). ADSCrossRefGoogle Scholar
  40. 40.
    M.H. Abdellatif, A.A. Azab, M. Salerno, Effect of rare earth doping on the vibrational spectra of spinel Mn-Cr ferrite. Mater. Res. Bull. 97, 260–264 (2018). CrossRefGoogle Scholar
  41. 41.
    S. Ameer, I.H. Gul, N. Mahmood, M. Mujahid, Synthesis, characterization and optical properties of in situ ZnFe2O4 functionalized rGO nano hybrids through modified solvothermal approach. Opt. Mater. (Amst) 45, 69–75 (2015). ADSCrossRefGoogle Scholar
  42. 42.
    Y. Geng, S.J. Wang, J.-K. Kim, Preparation of graphite nanoplatelets and graphene sheets. J. Colloid Interface Sci. 336, 592–598 (2009). ADSCrossRefGoogle Scholar
  43. 43.
    A. Dideykin, A.E. Aleksenskiy, D. Kirilenko, P. Brunkov, V. Goncharov, M. Baidakova, D. Sakseev, A. YaVul’, Monolayer graphene from graphite oxide. Diam. Relat. Mater. 20, 105–108 (2011). ADSCrossRefGoogle Scholar
  44. 44.
    C. Wang, L. Zhan, W. Qiao, L. Ling, Preparation of graphene nanosheets through detonation. New Carbon Mater. 26, 21–25 (2011). CrossRefGoogle Scholar
  45. 45.
    Q. Li, C.W. Kartikowati, S. Horie, T. Ogi, T. Iwaki, K. Okuyama, Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles. Sci. Rep. 7, 9894 (2017). ADSCrossRefGoogle Scholar
  46. 46.
    A.G. Kolhatkar, A.C. Jamison, D. Litvinov, R.C. Willson, T.R. Lee, Tuning the magnetic properties of nanoparticles. Int. J. Mol. Sci. 14, 15977–16009 (2013). CrossRefGoogle Scholar
  47. 47.
    G. Ren, L. Yang, Z. Zhang, B. Zhong, X. Yang, X. Wang, A new green synthesis of porous magnetite nanoparticles from waste ferrous sulfate by solid-phase reduction reaction. J. Alloys Compd. 710, 875–879 (2017). CrossRefGoogle Scholar
  48. 48.
    S. Pillai, D. Bhuwal, A. Banerjee, V. Shelke, Bulk interface engineering for enhanced magnetization in multiferroic BiFeO3 compounds. Appl. Phys. Lett. 102, 072907 (2013). ADSCrossRefGoogle Scholar
  49. 49.
    R. Pandey, L.K. Pradhan, S. Kumar, M. Kar, Crystal structure, magnetic and dielectric properties of (1–x) BiFe0.80Ti0.20O3 – (x)Co0.5Ni0.5Fe2O4 multiferroic composites. J. Alloys Compd. 762, 668–677 (2018). CrossRefGoogle Scholar
  50. 50.
    M. Saravanan, T.C.S. Girisun, S. VenugopalRao, Super-paramagnetic and unusual nonlinear absorption switching behavior of an in situ decorated CdFe2O4–rGO nanocomposite. J. Mater. Chem. C. 5, 9929–9942 (2017). CrossRefGoogle Scholar
  51. 51.
    O.O. Brovko, P. Ruiz-Díaz, T.R. Dasa, V.S. Stepanyuk, Controlling magnetism on metal surfaces with non-magnetic means: electric fields and surface charging. J. Phys. Condens. Matter. 26, 093001 (2014). CrossRefGoogle Scholar
  52. 52.
    J. Chakhalian, J.W. Freeland, G. Srajer, J. Strempfer, G. Khaliullin, J.C. Cezar, T. Charlton, R. Dalgliesh, C. Bernhard, G. Cristiani, H.-U. Habermeier, B. Keimer, Magnetism at the interface between ferromagnetic and superconducting oxides. Nat. Phys. 2, 244–248 (2006). CrossRefGoogle Scholar
  53. 53.
    V.P. Amin, M.D. Stiles, Spin transport at interfaces with spin-orbit coupling: phenomenology. Phys. Rev. B. 94, 104420 (2016). ADSCrossRefGoogle Scholar
  54. 54.
    R. Aso, D. Kan, Y. Shimakawa, H. Kurata, Octahedral tilt propagation controlled by a-site cation size at perovskite oxide heterointerfaces. Cryst. Growth Des. 14, 2128–2132 (2014). CrossRefGoogle Scholar
  55. 55.
    X. Ariando, G. Wang, Z.Q. Baskaran, J. Liu, J.B. Huijben, A. Yi, A.R. Annadi, A. Barman, S. Rusydi, Y.P. Dhar, J. Feng, H. Ding, T. Hilgenkamp, Venkatesan, electronic phase separation at the LaAlO3/SrTiO3 interface. Nat. Commun. 2, 188 (2011). ADSCrossRefGoogle Scholar
  56. 56.
    H. Tong, C. Qian, L. Miloslavsky, S. Funada, X. Shi, F. Liu, S. Dey, Studies on antiferromagnetic/ferromagnetic interfaces. J. Magn. Magn. Mater. 209, 56–60 (2000). ADSCrossRefGoogle Scholar
  57. 57.
    M.H. Abdellatif, A.A. Azab, A.M. Moustafa, Dielectric spectroscopy of localized electrical charges in ferrite thin film. J. Electron. Mater. 47, 378–384 (2018). ADSCrossRefGoogle Scholar
  58. 58.
    Y.J. Chen, G. Xiao, T.S. Wang, Q.Y. Ouyang, L.H. Qi, Y. Ma, P. Gao, C.L. Zhu, M.S. Cao, H.B. Jin, Porous Fe3O4/carbon core/shell nanorods: Synthesis and electromagnetic properties. J. Phys. Chem. C. 115, 13603–13608 (2011). CrossRefGoogle Scholar
  59. 59.
    X. Feng, Y. Fan, N. Nomura, K. Kikuchi, L. Wang, W. Jiang, A. Kawasaki, Graphene promoted oxygen vacancies in perovskite for enhanced thermoelectric properties. Carbon N. Y. 112, 169–176 (2017). CrossRefGoogle Scholar
  60. 60.
    W.H. Nam, B.B. Kim, S.G. Seo, Y.S. Lim, J.-Y. Kim, W.-S. Seo, W.K. Choi, H.-H. Park, J.Y. Lee, Structurally nanocrystalline-electrically single crystalline ZnO-reduced graphene oxide composites. Nano Lett. 14, 5104–5109 (2014). ADSCrossRefGoogle Scholar
  61. 61.
    M.-Q. Zhao, Q. Zhang, J.-Q. Huang, F. Wei, Hierarchical nanocomposites derived from nanocarbons and layered double hydroxides—properties, synthesis, and applications. Adv. Funct. Mater. 22, 675–694 (2012). CrossRefGoogle Scholar
  62. 62.
    N. Ambikeswari, S. Manivannan, Superior magnetodielectric properties of room temperature synthesized superparamagnetic cobalt ferrite–graphene oxide composite. J. Alloys Compd. 763, 711–718 (2018). CrossRefGoogle Scholar
  63. 63.
    O. Polat, M. Coskun, F.M. Coskun, B. ZenginKurt, Z. Durmus, Y. Caglar, M. Caglar, A. Turut, Electrical characterization of Ir doped rare-earth orthoferrite YbFeO3. J. Alloys Compd. 787, 1212–1224 (2019). CrossRefGoogle Scholar
  64. 64.
    A. Zankat, H. Boricha, V.G. Shrimali, K. Gadani, K. Sagapariya, B. Rajyaguru, M. Gal, D.D. Pandya, P.S. Solanki, N.A. Shah, Electrical properties of ZnO:ZnAlO nanoparticle matrix composites. J. Alloys Compd. 788, 623–631 (2019). CrossRefGoogle Scholar
  65. 65.
    P. Liu, Z. Yao, J. Zhou, Controllable synthesis and enhanced microwave absorption properties of silane-modified Ni0.4Zn0.4Co0.2Fe2O4 nanocomposites covered with reduced graphene oxide. RSC Adv. 5, 93739–93748 (2015). CrossRefGoogle Scholar
  66. 66.
    Y. Ding, Q. Liao, S. Liu, H. Guo, Y. Sun, G. Zhang, Y. Zhang, Reduced graphene oxide functionalized with cobalt ferrite nanocomposites for enhanced efficient and lightweight electromagnetic wave absorption. Sci. Rep. 6, 32381 (2016). ADSCrossRefGoogle Scholar
  67. 67.
    F. Meng, M. Yang, L. Zhao, Y. Zhang, X. Shang, P. Jin, W. Zhang, A comparative study of the structural, magnetic and electrochemical properties of Al3+ and Cu2+ substituted NiZn ferrite/reduced graphene oxide nanocomposites. Ceram. Int. 43, 15959–15964 (2017). CrossRefGoogle Scholar
  68. 68.
    T. Kavinkumar, D. Sastikumar, S. Manivannan, Effect of functional groups on dielectric, optical gas sensing properties of graphene oxide and reduced graphene oxide at room temperature. RSC Adv. 5, 10816–10825 (2015). CrossRefGoogle Scholar
  69. 69.
    C. Tsonos, Comments on frequency dependent AC conductivity in polymeric materials at low frequency regime. Curr. Appl. Phys. 19, 491–497 (2019). ADSCrossRefGoogle Scholar
  70. 70.
    H.M. El-Mallah, AC Electrical conductivity and dielectric properties of perovskite (Pb, Ca)TiO3 ceramic, ACTA Phys. Pol. A. 122 (2012) 174–179. Accessed 1 Oct 2019.CrossRefGoogle Scholar
  71. 71.
    H. Wang, L. Xiang, W. Wei, J. An, J. He, C. Gong, Y. Hou, Efficient and lightweight electromagnetic wave absorber derived from metal organic framework-encapsulated cobalt nanoparticles. ACS Appl. Mater. Interfaces. 9, 42102–42110 (2017). CrossRefGoogle Scholar
  72. 72.
    M. Li, X. Huang, C. Wu, H. Xu, P. Jiang, T. Tanaka, Fabrication of two-dimensional hybrid sheets by decorating insulating PANI on reduced graphene oxide for polymer nanocomposites with low dielectric loss and high dielectric constant. J. Mater. Chem. 22, 23477 (2012). CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Basic Sciences DepartmentHigher Technological InstituteTenth of Ramadan CityEgypt
  2. 2.Solid State Physics Department, Research Physics DivisionNational Research CentreGizaEgypt

Personalised recommendations