Applied Physics A

, 125:788 | Cite as

Preparation of WO3/g-C3N4 composites with enhanced photocatalytic hydrogen production performance

  • Peng Xing
  • Feng ZhouEmail author
  • Zhelun Li


Tungsten trioxide was prepared by a hydrothermal method, and WO3/g-C3N4 composite photocatalysts were prepared in two steps by hydrothermal synthesis and muffle furnace calcination. The hydrogen production experiment was carried out using g-C3N4 and WO3/g-C3N4 composites under simulated visible light irradiation. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (SEM), ultraviolet–visible diffuse reflectance spectroscopy (DRS), Fourier transform infrared spectroscopy (FT-IR) and Brunauer–Emmett–Teller (BET) analysis. It was found that WO3(H2O)0.333 prepared by hydrothermal treatment is nanorod-like and forms an effective combination with lamellar g-C3N4. The hydrogen production rate of the optimal sample is 224.4 μmol/h, which is twice that of pure g-C3N4. The addition of tungsten trioxide improves the separation efficiency of photogenerated electron–hole pairs and contributes to the improvement in the photocatalytic performance. This is of great significance to the application of modified g-C3N4.



This work is supported by the National Natural Science Foundation of China (nos. 51879018, 51771042 and 21676040) and the Fundamental Research Funds for the Central Universities (nos. 3132016065 and 3132016341).


  1. 1.
    A. Fujishima, K. Honda, Nature 238, 37–38 (1972)ADSCrossRefGoogle Scholar
  2. 2.
    S.A.A. Terohid, S. Heidari, A. Jafari, S. Asgary, Appl. Phys. A. 124, 567 (2018)ADSCrossRefGoogle Scholar
  3. 3.
    F. Zhang, H.Q. Zhuang, W.M. Zhang, J. Yin, F.H. Cao, Y.X. Pan, Catal. Today. 330, 203–208 (2019)CrossRefGoogle Scholar
  4. 4.
    S.W. Cao, J.G. Yu, J. Photochem. Photobiol. C. 27, 72–99 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Q.H. Shen, R.H.N. Bi, L.F. Wei, D.D. Hao, N.X. Li, J.C. Zhou, Int. J. Hydrog. Energy 44, 14550–14560 (2019)CrossRefGoogle Scholar
  6. 6.
    X.J. Zhou, H. Yu, D. Zhao, X.C. Wang, S.T. Zheng, Appl. Catal. B Environ. 248, 423–429 (2019)CrossRefGoogle Scholar
  7. 7.
    J.H. Qiu, X.G. Zhang, Y. Feng, X.F. Zhang, H.T. Wang, J.F. Yao, Appl. Catal. B Environ. 231, 317–342 (2018)CrossRefGoogle Scholar
  8. 8.
    L.X. Sang, H. Ge, B.W. Sun, Int. J. Hydrog. Energy 44, 15787–15794 (2019)CrossRefGoogle Scholar
  9. 9.
    C.A. Roberts, S.P. Phivilay, I.E. Wachs, Chin. Chem. Lett. 29, 769–772 (2018)CrossRefGoogle Scholar
  10. 10.
    X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 8, 76–80 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Y.J. Yuan, Z.K. Shen, S.T. Wu, Y.B. Su, L. Pei, Z.G. Ji, M.Y. Ding, W.F. Bai, Y.F. Chen, Z.T. Yu, Z.G. Zou, Appl. Catal. B Environ. 246, 120–128 (2019)CrossRefGoogle Scholar
  12. 12.
    Q.C. He, F. Zhou, S. Zhan, N.B. Huang, Y. Tian, Appl. Surf. Sci. 430, 325–334 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    L. Liang, L. Shi, F.X. Wang, L.Z. Yao, Y. Zhang, W. Qi, J. Hydrog. Energy 44, 16315–16326 (2019)CrossRefGoogle Scholar
  14. 14.
    J.Y. Tang, W.G. Zhou, R.T. Guo, C.Y. Huang, W.G. Pan, P.C. Liu, Energy Proc. 158, 1553–1558 (2019)CrossRefGoogle Scholar
  15. 15.
    S.E. Guo, Y.Q. Tang, Y. Xie, C.G. Tian, Q.M. Feng, W. Zhou, B.J. Jiang, Appl. Catal. B Environ. 218, 664–671 (2017)CrossRefGoogle Scholar
  16. 16.
    Z.J. Li, F. Raziq, C. Liu, L.L. Bai, L.Q. Jing, Curr. Opin. Environ. Sustain. 6, 57–62 (2017)Google Scholar
  17. 17.
    L. Chen, Y.M. Xu, B.L. Chen, Appl. Catal. B Environ. 256, 117848 (2019)CrossRefGoogle Scholar
  18. 18.
    Y. Li, K. Lv, W. Ho, F. Dong, X. Wu, Y. Xia, Appl. Catal. B Environ. 202, 611–619 (2017)CrossRefGoogle Scholar
  19. 19.
    X.B. Qian, W. Peng, J.H. Huang, Mater. Res. Bull. 102, 362–368 (2018)CrossRefGoogle Scholar
  20. 20.
    S.L. Deng, Z.B. Yang, G.J. Lv, Y.Q. Zhu, H.C. Li, F.M. Wang, X.B. Zhang, Appl. Phys. A. 44, 125 (2019)Google Scholar
  21. 21.
    J.Y. Chen, X.Y. Xiao, Y. Wang, Z.H. Ye, J. Appl. Surf. Sci. 467–468, 1000–1010 (2019)ADSGoogle Scholar
  22. 22.
    X. Liu, A.L. Jin, Y.S. Jia, T.L. Xia, C.X. Deng, M.H. Zhu, C.F. Chen, X.S. Chen, Appl. Surf. Sci. 405, 359–371 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    J.W. Fu, Q.L. Xu, J.X. Low, C.J. Jiang, J.G. Yu, Appl. Catal. B Environ. 243, 556–565 (2019)CrossRefGoogle Scholar
  24. 24.
    M.B. Tahir, M. Rafique, M. Isa Khan, A. Majid, F. Nazar, M. Sagir, S. Gilani, M. Farooq, A. Ahmed, Int. J. Energy Res. 42, 4667–4673 (2018)CrossRefGoogle Scholar
  25. 25.
    L. Na, P. Wang, S. Yan, H.T. Yu, N. Liu, Q. Xie, Chemosphere 215, 444–453 (2019)ADSCrossRefGoogle Scholar
  26. 26.
    S.F. Chen, Y.F. Hu, S.G. Meng, X.L. Fu, Appl. Catal. B Environ. 150–151, 564–573 (2014)CrossRefGoogle Scholar
  27. 27.
    Y. Tian, F. Zhou, S. Zhan, Z.Y. Zhu, Q.C. He, J. Photochem. Photobiol. A. 350, 10–16 (2018)CrossRefGoogle Scholar
  28. 28.
    S. Zhan, F. Zhou, N.B. Huang, Y.F. Yin, M. Wang, Y.F. Yang, Y.J. Liu, J. Mol. Catal. A Chem. 401, 41–47 (2015)CrossRefGoogle Scholar
  29. 29.
    Y.P. Zhang, X.Q. Hao, X.L. Ma, H. Liu, Z.L. Jin, Int. J. Hydrog. Energy 44, 13232–13241 (2019)CrossRefGoogle Scholar
  30. 30.
    S. Zhan, F. Zhou, N.B. Huang, Y.F. Yang, Y.J. Liu, Y.F. Yin, Y.N. Fang, Appl. Surf. Sci. 358, 328–335 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    Y.Z. Li, F. Zhou, Z.Y. Zhu, F. Wu, Appl. Surf. Sci. 467–468, 819–824 (2019)ADSCrossRefGoogle Scholar
  32. 32.
    J. Jin, J.G. Yu, D.P. Guo, C. Cui, W.K. Ho, Small. 11, 5262–5271 (2015)CrossRefGoogle Scholar
  33. 33.
    G.C. Chen, S.C. Bian, C.Y. Guo, X.R. Wu, Mater. Lett. 23, 596–599 (2019)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Ship-Machinery Maintenance and Manufacture for Ministry of TransportDalian Maritime UniversityDalianPeople’s Republic of China

Personalised recommendations