Advertisement

Applied Physics A

, 125:804 | Cite as

High-frequency Sezawa guided mode of GaN/sapphire using high aspect ratio electrode

  • Muhammad Musoddiq Jaafar
  • M. F. Mohd Razip WeeEmail author
  • Chang Fu Dee
  • Mohd Syafiq Faiz
  • Edward Yi Chang
  • Burhanuddin Yeop Majlis
Rapid communication
  • 19 Downloads

Abstract

The propagation of surface acoustic wave (SAW) on the piezoelectric substrate requires conventionally an interdigitated electrode structure to excite the mechanical displacement at resonance frequency. The control of the electrode thickness could be useful to manipulate the energy confinement and the band dispersion of the surface guided mode. It has been demonstrated recently that high aspect ratio (HAR) electrode could produce a dispersive shear horizontal and vertically polarized surface modes in the bulk piezoelectric substrate. In this theoretical study, we propose to employ a high aspect ratio electrode on top of the GaN/sapphire-layered substrate enabling the presence of Sezawa surface mode. Based from the dispersion band, we obtained a higher frequency of surface guided mode in the non-radiative zone in the GaN/sapphire heterostructure configuration compared to the bulk GaN substrate. Indeed, these guided modes are induced by the hybridization between Sezawa surface mode and the mechanical resonance of the HAR electrode producing nearly a flat band at the limit of First Brillouin Zone. Furthermore, the displacement of each guided modes indicates the confinement of energy mostly in the electrode with a slight amount of energy in the top layer of the substrate. We demonstrated also the frequency tuning of guided mode using diverse materials for the electrode but also the thickness of GaN layer. The obtained results could be useful for the development of high-frequency telecommunication and sensing device based on Sezawa surface acoustic wave.

Notes

Acknowledgements

We acknowledge financial support from Universiti Kebangsaan Malaysia and Ministry of Education of Malaysia through with the code of GGPM-2018-015 and by the partially supported by the “Center for mmWave Smart Radar Systems and Technologies” from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan. This project is also supported in part by the Ministry of Science and Technology, Taiwan, under Grant MOST 107-3017-F-009-001. The first author would also like to further extend our gratitude to Skim Zamalah Penyelidik Tersohor from Pusat Pengurusan Penyelidikan dan Instrumentasi (CRIM), Universiti Kebangsaan Malaysia.

References

  1. 1.
    F. Lumbantoruan, C.-H. Wu, X.-X. Zheng, S.K. Singh, C.-F. Dee, B.Y. Majlis, E.-Y. Chang, Phys. Status Solidi. 215, 1700741 (2018)ADSCrossRefGoogle Scholar
  2. 2.
    W.-C. Huang, C.-M. Chu, C.-F. Hsieh, Y.-Y. Wong, K. Chen, W.-I. Lee, Y.-Y. Tu, E.-Y. Chang, C.F. Dee, B.Y. Majlis, S.L. Yap, J. Electron. Mater. 45, 859 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    A. Müller, I. Giangu, A. Stavrinidis, A. Stefanescu, G. Stavrinidis, A. Dinescu, G. Konstantinidis, IEEE Electron. Device Lett. 36, 1299 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    A. Müller, G. Konstantinidis, V. Buiculescu, A. Dinescu, A. Stavrinidis, A. Stefanescu, G. Stavrinidis, I. Giangu, A. Cismaru, A. Modoveanu, Sens. Actuators A Phys. 209, 115 (2014)CrossRefGoogle Scholar
  5. 5.
    J. Pedrós, F. Calle, J. Grajal, R.J. Jiménez Riobóo, Y. Takagaki, K.H. Ploog, Z. Bougrioua, Phys. Rev. B 72, 75306 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    I. Rýger, G. Vanko, T. Lalinský, Š. Haščík, A. Benčúrová, P. Nemec, R. Andok, M. Tomáška, Sens. Actuators A Phys. 227, 55 (2015)CrossRefGoogle Scholar
  7. 7.
    K. Hashimoto, Surface acoustic wave devices in telecommunications, 1st edn. (Springer-Verlag, Heidelberg, 2000)CrossRefGoogle Scholar
  8. 8.
    F. Calle, J. Pedrós, T. Palacios, J. Grajal, Phys. Status Solidi. 2, 976 (2005)CrossRefGoogle Scholar
  9. 9.
    A.A. Mohanan, S.M. Islam, H.S. Ali, R. Parthiban, N. Ramakrishnan, Sensors 13, 2164 (2013)CrossRefGoogle Scholar
  10. 10.
    F.M. Mohd Razip Wee, M.M. Jaafar, S.M. Faiz, F.C. Dee, B. Yeop Majlis, Biosensors 8, 12 (2018)CrossRefGoogle Scholar
  11. 11.
    R.P. Moiseyenko, N.F. Declercq, V. Laude, J. Phys. D. Appl. Phys. 46, 365305 (2013)CrossRefGoogle Scholar
  12. 12.
    V. Laude, L. Robert, W. Daniau, A. Khelif, S. Ballandras, Appl. Phys. Lett. 89, 83515 (2006)CrossRefGoogle Scholar
  13. 13.
    T.-T. Wu, W.-S. Wang, J.-H. Sun, J.-C. Hsu, Y.-Y. Chen, Appl. Phys. Lett. 94, 101913 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    R. Lucklum, J. Li, Meas. Sci. Technol. 20, 124014 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Achaoui, A. Khelif, S. Benchabane, L. Robert, V. Laude, Phys. Rev. B 83, 104201 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    A. Khelif, Y. Achaoui, S. Benchabane, V. Laude, B. Aoubiza, Phys. Rev. B 81, 214303 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    M.F.M. Razip Wee, M. Addouche, K.S. Siow, A.R.M. Zain, A. Elayouch, F. Chollet, A. Khelif, AIP Adv. 6, 121703 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    M.B. Dühring, V. Laude, A. Khelif, J. Appl. Phys. 105, 93504 (2009)CrossRefGoogle Scholar
  19. 19.
    M. Addouche, M.A. Al-Lethawe, A. Elayouch, A. Khelif, AIP Adv. 4, 124303 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    R.V. Craster, S. Guenneau (eds.), Acoustic metamaterials–negative refraction, imaging, lensing and cloaking, 1st edn. (Springer, Netherlands, 2013)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Muhammad Musoddiq Jaafar
    • 1
    • 2
    • 3
  • M. F. Mohd Razip Wee
    • 1
    Email author
  • Chang Fu Dee
    • 1
  • Mohd Syafiq Faiz
    • 1
  • Edward Yi Chang
    • 2
    • 4
  • Burhanuddin Yeop Majlis
    • 1
  1. 1.Institute of Microengineering and NanoelectronicsUniversiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.International College of Semiconductor TechnologyNational Chiao Tung UniversityHsinchuTaiwan, ROC
  3. 3.Center for mmWave Smart Radar Systems and TechnologiesNational Chiao Tung UniversityHsinchuTaiwan
  4. 4.Department of Electronics EngineeringNational Chiao Tung UniversityHsinchuTaiwan, ROC

Personalised recommendations