Advertisement

Applied Physics A

, 125:798 | Cite as

Integration of ferroelectric BIT and dielectric HfO2 on silicon substrate with high data retention and endurance for ferroelectric FET applications

  • Rajesh Kumar Jha
  • Prashant SinghEmail author
  • Manish Goswami
  • B. R. Singh
Article
  • 20 Downloads

Abstract

For this proposed work, the electrical and ferroelectric properties of metal–ferroelectric–insulator–silicon (MFeIS) and metal–ferroelectric–insulator–metal (MFeIM) capacitors with Bi4Ti3O12 (BIT) ferroelectric film deposited on HfO2/Si substrate were investigated. Physical vapor deposition technique (RF sputtering) was carried out for the deposition of 100 nm ferroelectric and high-k dielectric film of 5, 10 and 15 nm thickness. The structural properties such as crystallographic phase, grain size with composition and refractive index of the deposited films were measured by X-ray diffraction, field emission scanning electron microscopy with energy dispersive spectroscopy (FESEM-EDS) and multiple angle ellipsometry. Metal/ferroelectric/silicon (MFeS), metal/ferroelectric/metal (MFeM), metal/insulator/silicon (MIS), MFeIS and MFeIM structures were fabricated to obtain the electrical and ferroelectric properties. Investigation shows that the MFeIS structure with 10 nm buffer layer demonstrates improved memory window of 8.81 V as compared to the 3.3 V in the MFeS structure. MFeIM with 10 nm HfO2 buffer layer shows maximum remnant polarization of 4.05 μC/cm2. MFeI (10 nm) S structure even shows endurance higher than 1013 read/write cycles and data retention for more than 10 years. The reliability of the ferroelectric and ferroelectric/dielectric stack was obtained by measuring the breakdown voltage characteristics.

Notes

Acknowledgements

The authors would like to express their sincere thanks to Prof. P. Nagabhushan, Director, Indian Institute of Information Technology, Allahabad for his constant encouragement and support.

References

  1. 1.
    S. M. Said, M. F. M. Sabri, and F. Salleh, in Ref. Modul. Mater. Sci. Mater. Eng. (Elsevier, 2016).Google Scholar
  2. 2.
    H. Ishiwara, J. Nanosci. Nanotechnol. 12, 7619 (2012)CrossRefGoogle Scholar
  3. 3.
    T. Mikolajick, Encycl. Mater. Sci. Technol. 2, 1 (2004)Google Scholar
  4. 4.
    E.C. Ahn, H.-S.P. Wong, E. Pop, Nat. Rev. Mater. 3, 1 (2018)CrossRefGoogle Scholar
  5. 5.
    J.S. Meena, S.M. Sze, U. Chand, T.Y. Tseng, Nanoscale Res. Lett. 9, 1 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    H. Pirovano, in Search Next Mem. Insid. Circuitry from Oldest to Emerg. Non-Volatile Memories (Springer International Publishing, Cham, 2017), pp. 27–46.Google Scholar
  7. 7.
    C.S. Hwang, Adv. Electron. Mater. 1, 1 (2015)Google Scholar
  8. 8.
    X. Pan, Designing Future Low-Power and Secure Processors with Non-Volatile Memory, The Ohio State University, 2017.Google Scholar
  9. 9.
    J. Zhao, C. Xu, P. Chi, Y. Xie, I.P.S.J. Trans, Syst. LSI Des. Methodol. 8, 2 (2015)Google Scholar
  10. 10.
    H. A. Demkov and A.-B. Posadas, in Thin Film. Silicon (World Scientific Publishing Co Pte Ltd, Austin, 2016), pp. 403–454.Google Scholar
  11. 11.
    S. Sakai, R. Ilangovan, IEEE Electron Device Lett. 25, 369 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    G.H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999)CrossRefGoogle Scholar
  13. 13.
    O. Auciello, J.F. Scott, R. Amesh, Phys. Today 51, 22 (1998)CrossRefGoogle Scholar
  14. 14.
    N.M. Sbrockey, G.S. Tompa, R. Lavelle, K.A. Trumbull, M.A. Fanton, D.W. Snyder, R.G. Polcawich, D.M. Potrepka, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 36, 031509 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    X.K. Wei, T. Sluka, B. Fraygola, L. Feigl, H. Du, L. Jin, C.L. Jia, N. Setter, A.C.S. Appl, Mater. Interfaces 9, 6539 (2017)CrossRefGoogle Scholar
  16. 16.
    P. Kour, S.K. Pradhan, P. Kumar, S.K. Sinha, M. Kar, Mater. Today Proc. 4, 5727 (2017)CrossRefGoogle Scholar
  17. 17.
    H. H. Huang, Q. Zhang, E. Huang, R. Maran, O. Sakata, Y. Ehara, T. Shiraishi, H. Funakubo, P. Munroe, and N. Valanoor, Adv. Mater. Interfaces 2, (2015).CrossRefGoogle Scholar
  18. 18.
    C. A. P. De Araujo, J. D. Cuchiaro, D. L. Mc Millan, M. C. Scott, and J. F. Scott, Nature 374, 627 (1995).ADSCrossRefGoogle Scholar
  19. 19.
    D.V. Averyanov, C.G. Karateeva, I.A. Karateev, A.M. Tokmachev, M.V. Kuzmin, P. Laukkanen, A.L. Vasiliev, V.G. Storchak, Mater. Des. 116, 616 (2017)CrossRefGoogle Scholar
  20. 20.
    S. R. Singamaneni, J. T. Prater, and J. Narayan, Appl. Phys. Rev. 3, (2016).Google Scholar
  21. 21.
    Z. Fan, J. Chen, J. Wang, J. Adv. Dielectr. 06, 1630003 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    F.T.L. Muniz, M.A.R. Miranda, C. dos Santos, J.M. Sasaki, Acta Crystallogr. Sect. A Found. Adv. 72, 385 (2016)CrossRefGoogle Scholar
  23. 23.
    J. Geissbühler, S. De Wolf, B. Demaurex, J. P. Seif, D. T. L. Alexander, L. Barraud, and C. Ballif, Appl. Phys. Lett. 102, (2013).ADSCrossRefGoogle Scholar
  24. 24.
    J.T. Dawley, R. Radspinner, B.J.J. Zelinski, D.R. Uhlmann, J. Sol-Gel Sci. Technol. 20, 85 (2001)CrossRefGoogle Scholar
  25. 25.
    M. Vehkanaki, T. Hatanpaa, M. Kemell, M. Ritala, M. Leskela, Chem. Matter. 18, 3883 (2006)CrossRefGoogle Scholar
  26. 26.
    C. Long, W. Ren, L. Liu, Y. Xia, and H. Fan, (n.d.).Google Scholar
  27. 27.
    M.M. Hasan, A.S.M.A. Haseeb, R. Saidur, H.H. Masjuki, M. Hamdi, Opt. Mater. (Amst). 32, 690 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    M. -Ur-Rahman, G. Yu, T. Soga, T. Jimbo, H. Ebisu, M. Umeno, J. Appl. Phys. 88, 4634 (2000)ADSCrossRefGoogle Scholar
  29. 29.
    K. K. Shih and D. B. Dove, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 12, 321 (1994).Google Scholar
  30. 30.
    P. Singh, R.K. Jha, R.K. Singh, B.R. Singh, Mater. Res. Express 5, 26301 (2018)CrossRefGoogle Scholar
  31. 31.
    P. Singh, R.K. Jha, R.K. Singh, B.R. Singh, Superlattices Microstruct. 121, 55 (2018)ADSCrossRefGoogle Scholar
  32. 32.
    P. Singh, R. K. Jha, R. K. Singh, and B. R. Singh, Phys. Semicond. Devices 517 (2017).Google Scholar
  33. 33.
    J. Sigman, G.L. Brennecka, P.G. Clem, B.A. Tuttle, J. Am. Ceram. Soc. 91, 1851 (2008)CrossRefGoogle Scholar
  34. 34.
    S.A. Yerişkin, M. Balbaşı, İ. Orak, J. Mater. Sci. Mater. Electron. 28, 7819 (2017)CrossRefGoogle Scholar
  35. 35.
    B. Gabriel, Clin. Sci. 1 (2012).Google Scholar
  36. 36.
    J.J. Wang, H.B. Huang, T.J.M. Bayer, A. Moballegh, Y. Cao, A. Klein, E.C. Dickey, D.L. Irving, C.A. Randall, L.Q. Chen, Acta Mater. 108, 229 (2016)CrossRefGoogle Scholar
  37. 37.
    L. Zhu and Q. Wang, (2012).Google Scholar
  38. 38.
    C. Long, Q. Chang, H. Fan, Sci. Rep. 7, 1 (2017)ADSCrossRefGoogle Scholar
  39. 39.
    S. Ma, X. Cheng, Z. Ma, T. Ali, Z. Xu, R. Chu, Ceram. Int. 44, 20465 (2018)CrossRefGoogle Scholar
  40. 40.
    J. Gao, G. He, J.W. Zhang, B. Deng, Y.M. Liu, J. Alloys Compd. 647, 322 (2015)CrossRefGoogle Scholar
  41. 41.
    M. Dawber, K.M. Rabe, J.F. Scott, Rev. Mod. Phys. 77, 1083 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    T. Ali, P. Polakowski, S. Riedel, T. Buttner, T. Kampfe, M. Rudolph, B. Patzold, K. Seidel, D. Lohr, R. Hoffmann, M. Czernohorsky, K. Kuhnel, P. Steinke, J. Calvo, K. Zimmermann, J. Muller, I.E.E.E. Trans, Electron Devices 65, 3769 (2018)ADSCrossRefGoogle Scholar
  43. 43.
    C. Dubourdieu, J. Bruley, T.M. Arruda, A. Posadas, J. Jordan-Sweet, M.M. Frank, E. Cartier, D.J. Frank, S.V. Kalinin, A.A. Demkov, V. Narayanan, Nat. Nanotechnol. 8, 748 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringIndian Institute of Information TechnologyAllahabadIndia

Personalised recommendations