Advertisement

Applied Physics A

, 125:807 | Cite as

The effects of the oxygen content on the photoelectrochemical properties of LaFeO3 perovskite thin films obtained by pulsed laser deposition

  • F. Andrei
  • I. Boerasu
  • R. Birjega
  • A. Moldovan
  • M. Dinescu
  • V. Ion
  • C. Mihailescu
  • N. D. ScarisoreanuEmail author
  • V. Leca
Article
  • 70 Downloads

Abstract

The physical properties of perovskite oxides are strongly influenced by their stoichiometry and one of the key features of these materials is the tunability of their functionality by controlling the interplay between the compositional and structural properties. Here, the effects on the photoelectrochemical (PEC) water splitting properties of ferroelectric LaFeO3 thin films obtained at different oxygen partial pressures during growth are reported in conjunction with the morphological, optical and structural features. The LaFeO3 thin films have been deposited by pulsed laser deposition on Nb:SrTiO3 substrates. The strong dependence of the photocurrent values Jphoto on the growth conditions is revealed by the photoelectrochemical measurements. Strong variations of the lateral coherence lengths L of LaFeO3/Nb:SrTiO3 with the oxygen partial pressure values are noticed from the X-ray diffraction (XRD) analysis. All the films are heteroepitaxial with small tensile strain levels detected in the crystalline structure, but only for a narrow interval of oxygen partial pressures the LFO/STON thin films show high quality crystalline structure with large lateral coherence length L and photoelectrochemical currents.

Notes

Acknowledgements

The authors F. Andrei, R. Birjega, M. Dinescu, V. Ion and N. D. Scarisoreanu gratefully acknowledge the financial support from PCE95 -I D-PCE-2016-0911 project.

References:s

  1. 1.
    A. Fujishima, K. Honda, Nature 238, 37 (1972)ADSCrossRefGoogle Scholar
  2. 2.
    Y. Hou, X.D. Zhuang, X.L. Feng, Small Methods 1, 1700090 (2017)CrossRefGoogle Scholar
  3. 3.
    A. Wolcott, W.A. Smith, T.R. Kuykendall, Y. Zhao, J.Z. Zhang, Adv Funct Mater 19, 1849 (2009)CrossRefGoogle Scholar
  4. 4.
    J.Y. Kim, G. Magesh, D.H. Youn, J.W. Jang, J. Kubota, K. Domen, J.S. Lee, Sci Rep 3, 2681 (2013)CrossRefGoogle Scholar
  5. 5.
    L. Yang, L. Jie, L. Wenzhang, H. Haizhou, Y. Yahui, L. Yaomin et al., Electrochim Acta 210, 251 (2016)CrossRefGoogle Scholar
  6. 6.
    L. Wenzhang, Z. Faqi, L. Jie, L. Canjun, Y. Yanghui, L. Yaomin et al., Electrochim Acta 160, 57 (2015)CrossRefGoogle Scholar
  7. 7.
    K.G. Kanade, B.J. Ook, K.K. Jeong, B.B. Kale, L.S. Mi, M.S. Jin et al., Int J Hydrog Energy 33, 6904 (2008)CrossRefGoogle Scholar
  8. 8.
    L. Yang, X. Lei, L. Yan, Y. Rong, Q. Jianglan, L. Yaoqi et al., J Power Sources 183, 701 (2008)CrossRefGoogle Scholar
  9. 9.
    K. Akihiko, Int J Hydrog Energy 31, 197 (2006)CrossRefGoogle Scholar
  10. 10.
    L. Xiaomeng, X. Jimin, S. Huorning, L. Jun, Y. Changing, L. Jiamin, Mater Sci Eng B 138, 289 (2007)CrossRefGoogle Scholar
  11. 11.
    N. Xinshu, L. Honghua, L. Guoguang, J Mol Catal A Chem 232, 89 (2005)CrossRefGoogle Scholar
  12. 12.
    J. Song et al., Nano Res 11, 642 (2018)CrossRefGoogle Scholar
  13. 13.
    F. Haydous, N.D. Scarisoreanu, R. Birjega, V. Ion, T. Lippert, N. Dumitrescu, A. Moldovan, A. Andrei, V.S. Teodorescu, C. Ghica, R. Negrea, M. Dinescu, Sci Rep 8(1), 15826 (2018)ADSCrossRefGoogle Scholar
  14. 14.
    F.T. Li, Y. Liu, R.H. Liu, Z.M. Sun, D.S. Zhao, C.G. Kou, Mater Lett 64, 223 (2010)CrossRefGoogle Scholar
  15. 15.
    J. Yang, H. Zhong, L. Ming, L. Zhang, Y. Zhang, React Kinet Catal Lett 97, 269 (2009)CrossRefGoogle Scholar
  16. 16.
    L. Sudan, J. Liqiang, F. Wei, Y. Libin, X. Baifu, F. Honggang, Mater Res Bull 42, 203 (2007)CrossRefGoogle Scholar
  17. 17.
    S. Govinder, S. Pawar, A.A. Tahir, Sci Rep 8, 3501 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    K. Nakamura, H. Mashiko, K. Yoshimatsu, A. Ohtomo, Appl Phys Lett 108, 211605 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    K.J. May, D.P. Fenning, T. Ming, W.T. Hong, D. Lee, K.A. Stoerzinger, M.D. Biegalski, A.M. Kolpak, Y.S. Horn, J Phys Chem Lett 6, 977 (2015)CrossRefGoogle Scholar
  20. 20.
    L. Li, P.A. Salvador, G.S. Rohrer, Nanoscale 6, 24 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    E. Enriquez, A. Chen, Z. Harrell, P. Dowden, N. Koskelo, J. Roback, M. Janoschek, C. Chen, Q. Jia, Sci Rep 7, 46184 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    Y.M. Kim, J. He, M.D. Biegalski, H. Ambaye, V. Lauter, H.M. Christen, S.T. Pantelides, S.J. Pennycook, S.V. Kalinin, A.Y. Borisevich, Nat Mater 11, 888 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    R. Mishra, Y.M. Kim, J. Salafranca, S.K. Kim, S.H. Chang, A. Bhattacharya, D.D. Fong, S.J. Pennycook, S.T. Pantelides, A.Y. Borisevich, Superlattices. Nano Lett 14, 2694 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    S.Y. Smolin, M.D. Scafetta, G.W. Guglietta, J.B. Baxter, S.J. May, Appl Phys Lett 105, 022103 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    N.D. Scarisoreanu et al., ACS Appl Mater Interfaces 7, 23984–23992 (2015)CrossRefGoogle Scholar
  26. 26.
    N.D. Scarisoreanu et al., Sci Rep 6, 25535 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    Y Chen, DM Bagnal, H-j Koh, K-t Park, K Hiraga, Z Zhu, T Yao (1998) J Appl Phys 84(7):3912.Google Scholar
  28. 28.
    V. Ion et al., Sci Rep 8, 2056 (2018)ADSCrossRefGoogle Scholar
  29. 29.
    Y. Lv, Y. Zhu et al., J Phys Chem C 117, 18520 (2013)CrossRefGoogle Scholar
  30. 30.
    X. Liu, L. Zhang, Y. Zheng, Z. Guo, Y. Zhu, H. Chen, F. Li, P. Liu, B. Yu, X. Wang, J. Liu, Y. Chen, M. Liu, Adv Sci 6, 1801898 (2019)CrossRefGoogle Scholar
  31. 31.
    X. Bai, L. Wang, R. Zong, Y. Lv, Y. Sun, Y. Zhu, Langmuir 29, 3097 (2013)CrossRefGoogle Scholar
  32. 32.
    J. Kim, X. Yin, K.C. Tsao, S. Fang, H. Yang, J Am Chem Soc 136, 14646 (2014)CrossRefGoogle Scholar
  33. 33.
    T. Huaqiao, Z. Zhao, W.B. Zhu, N. Coker, B. Li, M. Zheng, W. Yu, H. Fan, Z. Sun, A.C.S. Appl, Mater Interfaces 6, 19184 (2014)CrossRefGoogle Scholar
  34. 34.
    K.A. Stoerzinger, R. Comes, S.R. Spurgeon, S. Thevuthasan, K. Ihm, E.J. Crumlin, S.A. Chambers, J Phys Chem Lett 8(5), 1038–1043 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Plasma and Radiation PhysicsNational Institute for LaserMagureleRomania
  2. 2.Faculty of ChemistryUniversity of BucharestBucharestRomania
  3. 3.Extreme Light Infrastructure-Nuclear PhysicsHoria Hulubei National Institute for Physics and Nuclear EngineeringMagureleRomania

Personalised recommendations