Applied Physics A

, 125:785 | Cite as

Synthesis of Bi4.5Na0.5Ti4O15 by co-precipitation route and optimization of calcination and sintering temperatures

  • Ankit Gupta
  • V. Raghavendra Reddy
  • Rajnish Kurchania
  • Oroosa SubohiEmail author
Rapid communication


Present work reports the synthesis of four-layered Aurivillius compound Bi4.5Na0.5Ti4O15 by co-precipitation route at different calcination (500 °C, 600 °C and 700 °C) and sintering temperatures (900 °C and 1000 °C). The role of calcination temperature on phase formation and the influence of sintering temperature on ferroelectric and dielectric properties are investigated. The X-ray diffraction analysis reveals that 700 °C is the optimal calcination temperature at which pure phase Bi4.5Na0.5Ti4O15 is obtained. Ferroelectric and dielectric properties improve with an increase in sintering temperature due to the formation of higher density grains. The ceramic sintered at 1000 °C is found to show higher value of remanent polarization (2Pr = 0.38 µC/cm2), dielectric constant (23.5 at 1 kHz) and low dielectric loss. However, leakage current is observed in these ceramics due to creation of bismuth vacancies at higher temperature.



Authors are thankful to Dr. Ajay Gupta UGC-DAE-CSR, Indore, for providing XRD facility and Dr. R. Venkatesh UGC-DAE-CSR, Indore, for providing FESEM facility.


  1. 1.
    B. Aurivillius, Mixed bismuth oxides with layer lattices. Ark. Kemi. 1, 463–480 (1949)Google Scholar
  2. 2.
    C.M. Wang, J.F. Wang, Z.G. Gai, Enhancement of dielectric and piezoelectric properties of M0.5Bi4.5Ti4O15 (M = Na, K, Li) ceramics by Ce doping. Scr. Mater. 57, 789–792 (2007)CrossRefGoogle Scholar
  3. 3.
    M.-L. Zhao, Q.-Z. Wu, C.-L. Wang, J.-L. Zhang, Z.-G. Gai, C.-M. Wang, Dielectric and piezoelectric properties of xNa0.5Bi4.5Ti4O15–(x–1)Na0.5Bi0.5TiO3 composite ceramics. J. Alloy. Compd. 476(1–2), 393–396 (2009)CrossRefGoogle Scholar
  4. 4.
    L. Zhou, P. Du, Q. Zhang, J. Zhu, Y. Hou, L. Luo, W. Li, Manipulating the ferroelectric, dielectric and photoluminescence performance of Ba0.77Ca0.23TiO3 ceramics through Pr3+ ions doping. J. Alloy. Compd. 810, 151897 (2019)CrossRefGoogle Scholar
  5. 5.
    Q. Zhang, L. Luo, Z. Zhu, P. Du, Y. Zhang, Reversible luminescence modulation and temperature-sensing properties of Pr3+/Yb3+ codoped K0.5Na0.5NbO3 ceramics. J. Am. Ceram. Soc. 102(10), 6018–6026 (2019)CrossRefGoogle Scholar
  6. 6.
    A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, S.H. Jabarov, V.V. Korovushkin, S.V. Trukhanov, E.L. Trukhanova, Magnetic properties and Mössbauer study of gallium doped M-type barium hexaferrites. Ceram. Int. 43, 12822–12827 (2017)CrossRefGoogle Scholar
  7. 7.
    S.V. Trukhanov, A.V. Trukhanov, L.V. Panina, V.G. Kostishyn, V.A. Turchenko, E.L. Trukhanova, AnV Trukhanov, T.I. Zubar, V.M. Ivanov, D.I. Tishkevich, D.A. Vinnik, S.A. Gudkova, D.S. Klygach, M.G. Vakhitov, P. Thakur, A. Thakur, Y. Yang, Temperature evolution of the structure parameters and exchange interactions in BaFe12 xInxO19. J. Magn. Magn. Mater. 466, 393–405 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishin, L.V. Panina, I.S. Kazakevich, V.A. Turchenko, V.V. Kochervinskiy, Coexistence of spontaneous polarization and magnetization in substituted M-type hexaferrites BaFe12 xAlxO19 (x ≤ 1.2) at room temperature. JETP Lett. 103, 100–105 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    A.V. Trukhanov, S.V. Trukhanov, L.V. Panina, V.G. Kostishyn, I.S. Kazakevich, AnV Trukhanov, E.L. Trukhanova, V.O. Natarov, V.A. Turchenko, M.M. Salem, A.M. Balagurov, Evolution of structure and magnetic properties for BaFe11.9Al0.1O19 hexaferrite in a wide temperature range. J. Magn. Magn. Mater. 426, 487–496 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    N. Kumar, A. Shukla, R.N.P. Choudhary, Structural, electrical and magnetic characteristics of Ni/Ti modified BiFeO3 lead free multiferroic material. J. Mater. Sci. Mater. Electron. 28(9), 6673–6684 (2017)CrossRefGoogle Scholar
  11. 11.
    N. Kumar, A. Shukla, R.N.P. Choudhary, Structural, dielectric, electrical and magnetic characteristics of lead-free multiferroic: Bi(Cd0.5Ti0.5)O3–BiFeO3 solid solution. J. Alloy. Compd. 747, 895–904 (2018)CrossRefGoogle Scholar
  12. 12.
    N. Kumar, A. Shukla, Processing and characterization of Cd/Ti co-substituted BiFeO3 nanoceramics. Int. J. Mod. Phys. B 32, 1840069 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    Z. Zhou, R. Liang, Y. Li, X. Dong, Enhanced electrical resistivity of Al2O3 addition modified Na0.5Bi2.5Nb2O9 high temperature piezoceramics. J. Am. Ceram. Soc. 98, 3925–3929 (2015)CrossRefGoogle Scholar
  14. 14.
    V.S. Kopp, V.M. Kaganer, J. Schwarzkopf, F. Waidick, T. Remmele, A. Kwasniewski, M. Schmidbauer, X-ray diffraction from non-periodic layered structures with correlations: analytical calculation and experiment on mixed Aurivillius films. Acta Cryst. A 68, 148–155 (2012)CrossRefGoogle Scholar
  15. 15.
    A. Sanson, R.W. Whatmore, Properties of Bi4Ti3O12–(Na1/2Bi1/2)TiO3 piezoelectric ceramics. Jpn. J. Appl. Phys. 41, 7127–7130 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    S. Supriya, Synthesis and characterization of Na0.5Bi4.5Ti4O15 powders by stearic acid gel method. Arch. Appl. Sci. Res. 2(5), 386–391 (2010)Google Scholar
  17. 17.
    D. Gao, K.W. Kwok, Microstructure, piezoelectric and ferroelectric properties of Mn-added Na0.5Bi4.5Ti4O15 ceramics. Curr. Appl. Phys. 11, 124–127 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    M.A. Almessiere, Y. Slimani, H. Güngüne, A. Bayka, S.V. Trukhanov, A.V. Trukhanov, Manganese/yttrium codoped strontium nanohexaferrites: evaluation of magnetic susceptibility and Mössbauer spectra. Nanomaterials 9, 24-18 (2019)Google Scholar
  19. 19.
    M.A. Almessiere, A.V. Trukhanov, Y. Slimani, K.Y. You, S.V. Trukhanov, E.L. Trukhanova, F. Esa, A. Sadaqat, K. Chaudhary, M. Zdorovets, A. Baykal, Correlation between composition and electrodynamics properties in nanocomposites based on hard/soft ferrimagnetics with strong exchange coupling. Nanomaterials 9, 202–213 (2019)CrossRefGoogle Scholar
  20. 20.
    I.O. Troyanchuk, S.V. Trukhanov, H. Szymczak, K. Baerner, Effect of oxygen content on the magnetic and transport properties of Pr0.5Ba0.5MnO3 γ. J. Phys. Condens. Matter 12, L155–L158 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    S.V. Trukhanov, I.O. Troyanchuk, I.M. Fita, H. Szymczak, K. Bärner, Comparative study of the magnetic and electrical properties of Pr1 xBaxMnO3 δ manganites depending on the preparation conditions. J. Magn. Magn. Mater. 237, 276–282 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.V. Korovushkin, V.A. Turchenko, P. Thakur, A. Thakur, Y. Yang, D.A. Vinnik, E.S. Yakovenko, LYu. Matzui, E.L. Trukhanova, S.V. Trukhanov, Control of electromagnetic properties in substituted M-type hexagonal ferrites. J. Alloy. Compd. 754, 247–256 (2018)CrossRefGoogle Scholar
  23. 23.
    P. Goel, K.L. Yadav, Effect of V5+ doping on structural and dielectric properties of SrBi2Nb2O9 synthesized at low temperature. Phys. B 382, 245–251 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    S. Dubey, O. Subohi, R. Kurchania, A comparative study of the properties of five-layered Aurivillius oxides A2Bi4Ti5O18 (A = Ba, Pb, and Sr) synthesized by different wet chemical routes. Appl. Phys. A 124, 461 (2018). (1–12) ADSCrossRefGoogle Scholar
  25. 25.
    X. Jiang, X.P. Jiang, C. Chen, N. Tu, Y. Chen, B. Zhang, Photoluminescence, structural, and electrical properties of Erbium-doped Na0.5Bi4.5Ti4O15 ferroelectric ceramics. J. Am. Ceram. Soc. 99, 1332–1339 (2016)CrossRefGoogle Scholar
  26. 26.
    A.R. West, Solid State Chemistry and Its Applications (Wiley, New York, 1974)Google Scholar
  27. 27.
    A.V. Trukhanov, L.V. Panina, S.V. Trukhanov, V.G. Kostishyn, V.A. Turchenko, D.A. Vinnik, T.I. Zubar, E.S. Yakovenko, LYu. Macuy, E.L. Trukhanov, Critical influence of different diamagnetic ions on electromagnetic properties of BaFe12O19. Ceram. Int. 44, 13520–13529 (2018)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsVisvesvaraya National Institute of Technology (VNIT)NagpurIndia
  2. 2.UGC-DAE-Consortium for Scientific ResearchIndoreIndia
  3. 3.Department of PhysicsMaulana Azad National Institute of Technology (MANIT)BhopalIndia

Personalised recommendations