Applied Physics A

, 125:835 | Cite as

Electronic energy loss (Se) sensitivity of electrochemically synthesized free-standing Cu nanowires irradiated by 120 MeV high energy ion beam of different atomic mass

  • Rashi Gupta
  • Rajesh KumarEmail author


Ion beam irradiation is a technique to tune the properties of copper nanowires for various potential applications. Copper nanowires prepared by template-assisted electrochemical deposition have been irradiated with two different ions 16S32 and 79Au197 (Energy = 120 MeV and Charge state = 9 + ), respectively, at different fluences of 1 × 1011, 5 × 1011, 1 × 1012 and 5 × 1012 ions/cm2, to study the role of Se in modifying properties of the nanowires. The rate of energy deposited by incident ion in a material medium is a linear function of atomic number of the incident ion as governed by Bethe-Bloch formula, thus, the modifications produced by both ions in the same host matrix would be different. Scanning Electron Microscopy graphs revealed that nanowires kept their integrity on irradiation with both ions and at all irradiation fluences. The effect of irradiation on the structural properties were studied using X-ray diffraction measurements. Upon irradiation, peak intensity changed significantly due to irradiation-induced defects and was quantitatively calculated using Harris formula. The crystallite size, surface morphology, dislocation density, strengthening coefficient, strain, stress and optical properties were analyzed before and after irradiation. The crystallite size of the nanowires increases with increasing ion fluence and also the strain and dislocation density value decreases for nanowires irradiated with sulphur (9+) ions and opposite trend was observed for nanowires irradiated with Gold (9+) ions. The resistivity data obtained from the I–V characteristics curve was defined by the combined Fuchs–Sondheimer model and Mayadas–Shatzkes model with a surface specularity coefficient of 0.52.

Graphic abstract



One of the author’s Dr. Rajesh Kumar, acknowledge the FRGS Project No. GGSIPU/DRC/FRGS/2019/1553/15 for the financial support for carrying out of this work. The authors wish to acknowledge the Director, Inter University Accelerator Centre (IUAC), New Delhi, India for providing irradiation facility under the project Ref: IUAC/XIII.3A/59319 as well as other instrumentation facilities. We also thank Pelletron group, IUAC, New Delhi, for expert assistance in the operation of the tandem accelerator. We are also grateful to Dr. S A. Khan for his help in obtaining FESEM images. We would also like to take the opportunity to thank all the reviewers for their effort and expertise in reviewing this paper that has helped in further improving the quality of the research paper.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    T. Khudiyev, O. Tobail, M. Bayindir, Tailoring self-organized nanostructured morphologies in kilometer-long polymer fiber. Sci. Rep. 4, 1–8 (2014)Google Scholar
  2. 2.
    B.D. Gates, Q. Xu, M. Stewart, D. Ryan, C.G. Willson, G.M. Whitesides, New approaches to nanofabrication: molding, printing, and other techniques. Chem. Rev. 105, 1171–1196 (2005)CrossRefGoogle Scholar
  3. 3.
    S. Kawata, H.B. Sun, T. Tanaka, K. Takada, Finer features for functional microdevices. Nature 412, 697–698 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    D. Natelson, Best of both worlds. Nat. Mater. 5, 853–854 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    M.C. McAlpine, R.S. Friedman, S. Jin, K. Lin, W.U. Wang, C.M. Lieber, High-performance nanowire electronics and photonics on glass and plastic substrates. Nano Lett. 3, 1531–1535 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    M. Heurlin, N. Anttu, C. Camus, L. Samuelson, M.T. Borgström, In situ characterization of nanowire dimensions and growth dynamics by optical reflectance. Nano Lett. 15, 3597–3602 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    F. Chen, Y.J. Zhu, Large-scale automated production of highly ordered ultralong hydroxyapatite nanowires and construction of various fire-resistant flexible ordered architectures. ACS Nano 10, 11483–11495 (2016)CrossRefGoogle Scholar
  8. 8.
    I. Oh, J. Kye, S. Hwang, Enhanced photoelectrochemical hydrogen production from silicon nanowire array photocathode. Nano Lett. 12, 298–302 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    V. Kumar, D. Gupta, R. Kumar, Optimizing photovoltaic charge generation of hybrid heterojunction core-shell silicon nanowire arrays: an FDTD analysis. ACS Omega. 3, 4123–4128 (2018)CrossRefGoogle Scholar
  10. 10.
    Plasmonic, electrical and catalytic properties of one-dimensional copper nanowires: effect of native oxides, 2018.Google Scholar
  11. 11.
    Copper as electrical conductive material with above-standard performance properties, (2015) 1–38.
  12. 12.
    N.H. Tran, T.H. Duong, H.C. Kim, A fast fabrication of copper nanowire transparent conductive electrodes by using pulsed laser irradiation. Sci. Rep. 7, 15093 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    A. Mourachkine, O.V. Yazyev, C. Ducati, J.P. Ansermet, Template nanowires for spintronics applications: nanomagnet microwave resonators functioning in zero applied magnetic field. Nano Lett. 8, 3683–3687 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    X. Wang, R. Wang, H. Zhai, X. Shen, T. Wang, L. Shi, R. Yu, J. Sun, Room-temperature surface modification of Cu nanowires and their applications in transparent electrodes, sers-based sensors, and organic solar cells, ACS Appl. Mater. Interfaces. 8, 28831–28837 (2016)CrossRefGoogle Scholar
  15. 15.
    K.B. Lee, J.H. Seo, J.P. Ahn, H.K. Won, H.R. Yang, A simple route for the synthesis of copper nanowires. Met. Mater. Int. 18, 727–730 (2012)CrossRefGoogle Scholar
  16. 16.
    H. Choi, S.H. Park, Seedless growth of free-standing copper nanowires by chemical vapor deposition. J. Am. Chem. Soc. 126, 6248–6249 (2004)CrossRefGoogle Scholar
  17. 17.
    D.V. Ravi Kumar, K. Woo, J. Moon, Promising wet chemical strategies to synthesize Cu nanowires for emerging electronic applications. Nanoscale. 7, 17195–17210 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    X. Jiang, T. Herricks, Y. Xia, CuO nanowires can be synthesized by heating copper substrates in air. Nano Lett. 2, 1333–1338 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    K.R. Monika, R.P. Chauhan, R. Kumar, S. Chakarvarti, Preparation and field emission study of low-dimensional ZnS arrays and tubules. J. Exp. Nanosci. 10, 126–134 (2015)CrossRefGoogle Scholar
  20. 20.
    M. Rani, R. Kumar, K.R. Singh, S.K. Chakarvarti, Preparation and characterization of Ag2Se nanowalled tubules by electrochemical method. Chalcogenide Lett. 10, 99–104 (2013)Google Scholar
  21. 21.
    C.R. Martin, Nanomaterials: a membrane-based synthetic approach. Science 266, 1961–1966 (1994)ADSCrossRefGoogle Scholar
  22. 22.
    J.C. Hulteen, C.R. Martin, A general template-based method for the preparation of nanomaterials. J. Mater. Chem. 7, 1075–1087 (1997)CrossRefGoogle Scholar
  23. 23.
    Z. Miao, D. Xu, J. Ouyang, G. Guo, X. Zhao, Y. Tang, Electrochemically induced sol−gel preparation of single-crystalline TiO2 nanowires. Nano Lett. 2, 717–720 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    M. Lai, J.H. Lim, S. Mubeen, Y. Rheem, A. Mulchandani, M.A. Deshusses, N.V. Myung, Size-controlled electrochemical synthesis and properties of SnO2 nanotubes. Nanotechnology. 20, 185602 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    M.P. Zach, K. Inazu, K.H. Ng, J.C. Hemminger, R.M. Penner, Synthesis of molybdenum nanowires with millimeter-scale lengths using electrochemical step edge decoration. Chem. Mater. 14, 3206–3216 (2002)CrossRefGoogle Scholar
  26. 26.
    Y.Y. Chen, B.Y. Yu, J.H. Wang, R.E. Cochran, J.J. Shyue, Template-based fabrication of SrTiO3 and BaTiO3 nanotubes. Inorg. Chem. 48, 681–686 (2009)CrossRefGoogle Scholar
  27. 27.
    C.M. Bruinink, M. Péter, P.A. Maury, M. De Boer, L. Kuipers, J. Huskens, D.N. Reinhoudt, Capillary force lithography: fabrication of functional polymer templates as versatile tools for nanolithography. Adv. Funct. Mater. 16, 1555–1565 (2006)CrossRefGoogle Scholar
  28. 28.
    A. Sharma, A. Srivastava, Y. Jeon, B. Ahn, Template-Assisted fabrication of nanostructured tin (β-Sn) arrays for bulk microelectronic packaging devices. Metals (Basel). 8, 347 (2018)CrossRefGoogle Scholar
  29. 29.
    H. Shang, G. Cao, Template-based synthesis of nanorod or nanowire arrays, in Handbook of Nanotechnology, ed. by B. Bhushan (Spinger, New York, 2010), p. 165Google Scholar
  30. 30.
    N. Itoh, A.M. Stoneham, Materials modification by electronic excitation. Radiat. Eff. Defects Solids. 155, 277–290 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    M.K. Jaiswal, R. Kumar, D. Kanjilal, C.L. Dong, C.L. Chen, K. Asokan, S. Ojha, Studies of dense electronic excitation-induced modification in crystalline Fe-doped SnO2 thin films. Appl. Surf. Sci. 332, 726–735 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    D.K. Avasthi, Some interesting aspects of swift heavy ions in materials science. Curr. Sci. 78, 1297–1303 (2000)Google Scholar
  33. 33.
    Z.G. Wang, C. Dufour, E. Paumier, M. Toulemonde, The Sesensitivity of metals under swift-heavy-ion irradiation: a transient thermal process. J. Phys. Condens. Matter. 6, 6733–6750 (1994)ADSCrossRefGoogle Scholar
  34. 34.
    Griffiths D, Introduction to elememtary particle physics, 2 edition, Wiley, Hoboken, pp 1–15.nGoogle Scholar
  35. 35.
    O. Peña-Rodríguez, A. Prada, J. Olivares, A. Oliver, L. Rodríguez-Fernández, H.G. Silva-Pereyra, E. Bringa, J.M. Perlado, A. Rivera, Understanding the ion-induced elongation of silver nanoparticles embedded in silica. Sci. Rep. 7, 1–9 (2017)CrossRefGoogle Scholar
  36. 36.
    R.S. Averback, Ion-irradiation studies of cascade damage in metals. Nucl. Mater J. 108–109, 33–45 (1982)ADSCrossRefGoogle Scholar
  37. 37.
    S. Panchal, R.P. Chauhan, Krypton ion implantation effect on selenium nanowires. Phys. Lett. A. 381, 2636–2642 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    M.E. Toimil-Molares, Characterization and properties of micro- and nanowires of controlled size, composition, and geometry fabricated by electrodeposition and ion-track technology. Beilstein Nanotechnol J. 3, 860–883 (2012)CrossRefGoogle Scholar
  39. 39.
    James JF, Ziegler F, Biersack JP, M.D. Ziegler M (2008) SRIM, the stopping and range of ions in matter.
  40. 40.
    Y. Wang, W. Tang, L. Zhang, Crystalline Size effects on texture coefficient, electrical and optical properties of sputter-deposited Ga-doped ZnO thin films. Mater. J. Sci. Technol. 31, 175–181 (2015)CrossRefGoogle Scholar
  41. 41.
    Elias J, Tena-Zaera R, Lévy-Clément C (20017) Electrodeposition of ZnO nanowires with controlled dimensions for photovoltaic applications: role of buffer layer. Thin Solid Films. 515:8553–8557.ADSCrossRefGoogle Scholar
  42. 42.
    M. Kumar, A. Kumar, A.C. Abhyankar, Influence of texture coefficient on surface morphology and sensing properties of W-doped nanocrystalline tin oxide thin films. ACS Appl. Mater. Interfaces. 7, 3571–3580 (2015)CrossRefGoogle Scholar
  43. 43.
    M.K. Jaiswal, D. Kanjilal, R. Kumar, Structural and optical studies of 100 MeV Au irradiated thin films of tin oxide. Nucl. Instruments Methods Phys. Res. Sect B Beam Interact. Mater. Atoms. 314, 170–175 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    M.K. Jaiswal, R. Kumar, Studies of dense electronic excitation induced modification in cobalt doped SnO2 thin films prepared by RF sputtering technique. J. Alloys Compd. 648, 550–558 (2015)CrossRefGoogle Scholar
  45. 45.
    S. Goel, N. Sinha, H. Yadav, A.J. Joseph, B. Kumar, Experimental investigation on the structural, dielectric, ferroelectric and piezoelectric properties of La doped ZnO nanoparticles and their application in dye-sensitized solar cells. Phys. E Low Dimensional Syst. Nanostruct. 91, 72–81 (2017)ADSCrossRefGoogle Scholar
  46. 46.
    S. Goel, N. Sinha, H. Yadav, S. Godara, A.J. Joseph, B. Kumar, Ferroelectric Gd-doped ZnO nanostructures: enhanced dielectric, ferroelectric and piezoelectric properties. Mater. Chem. Phys. 202, 56–64 (2017)CrossRefGoogle Scholar
  47. 47.
    M. Toulemonde, W. Assmann, B.M. Zhang, W.J. Weber, C. Dufour, Z.G. Wang, Material Transformation: Interaction between nuclear and electronic energy losses. Proc. Mater. Sci. 7, 272–277 (2014)CrossRefGoogle Scholar
  48. 48.
    V.V. Ison, A.R. Rao, V. Dutta, P.K. Kulriya, D.K. Avasthi, S.K. Tripathi, Swift heavy ion induced structural changes in CdS thin films possessing different microstructures: a comparative study. J. Appl. Phys. 106, 023508 (2009)ADSCrossRefGoogle Scholar
  49. 49.
    A. Kamarou, E. Wendler, W. Wesch, A. Kamarou, E. Wendler, W. Wesch, Charge state effect on near-surface damage formation in swift heavy ion irradiated InP. J. Appl. Phys. 97, 123532 (2006)ADSCrossRefGoogle Scholar
  50. 50.
    R. Sreekumar, R. Jayakrishnan, C. Sudha Kartha, K.P. Vijayakumar, S.A. Khan, D.K. Avasthi, Enhancement of band gap and photoconductivity in gamma indium selenide due to swift heavy ion irradiation. J. Appl. Phys. 103, 023709 (2008)ADSCrossRefGoogle Scholar
  51. 51.
    K.M. Abhirami, P. Matheswaran, S.B.R. Gokul, K. Asokan, Structural and morphological properties of Ag ion irradiated SnO2 thin films. IOP Conf. Ser. Mater. Sci. Eng. 73, 12113 (2015)CrossRefGoogle Scholar
  52. 52.
    J.W. Morris, Defects in crystals, in Materials Science and Engineering: An Introduction, vol. 7, ed. by W.D. Callister, D.G. Rethwisch (Wiley, New York, 2007), p. 76Google Scholar
  53. 53.
    P. Singh, R. Kumar, Influence of high-energy ion irradiation on the structural, optical, and chemical properties of polytetrafluoroethylene. Adv. Polym. Technol. 33, 21410 (2014)CrossRefGoogle Scholar
  54. 54.
    K. Hartman, M. Bertoni, J. Serdy, T. Buonassisi, Dislocation density reduction in multicrystalline silicon solar cell material by high temperature annealing. Appl. Phys. Lett. 93, 122108 (2008)ADSCrossRefGoogle Scholar
  55. 55.
    S. Gupta, F. Singh, B. Das, Swift heavy ion irradiation induced modifications in structural, microstructural, electrical and magnetic properties of mn doped SnO2 thin films. Nucl. Instrum. Methods Phys. Res B 400, 37–57 (2015)ADSCrossRefGoogle Scholar
  56. 56.
    R. Chattot, T. Asset, P. Bordet, J. Drnec, L. Dubau, F. Maillard, beyond strain and ligand effects: microstrain-induced enhancement of the oxygen reduction reaction kinetics on various PtNi/C nanostructures. ACS Catal. 7, 398–408 (2017)CrossRefGoogle Scholar
  57. 57.
    Y. Zhao, J. Zhang, Microstrain and grain-size analysis from diffraction peak width and graphical derivation of high-pressure thermomechanics. J. Appl. Crystallogr. 41, 1095–1108 (2008)CrossRefGoogle Scholar
  58. 58.
    V. Mote, Y. Purushotham, B. Dole, Williamson-hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 6, 6 (2012)ADSCrossRefGoogle Scholar
  59. 59.
    A. Ravalia, M. Vagadia, P.S. Solanki, K. Asokan, D.G. Kuberkar, Role of strain and nanoscale defects in modifying the multiferroicity in nanostructured BiFeO3 films. J. Exp. Nanosci. 10, 1057–1067 (2015)CrossRefGoogle Scholar
  60. 60.
    K. Gadani, K.N. Rathod, Z. Joshi, D. Dhruv, A.D. Joshi, K. Asokan, N.A. Shah, P.S. Solanki, Effect of swift heavy ion irradiation on dielectric properties of manganite based thin films. Mater. Today Proc. 5, 9916–9921 (2018)CrossRefGoogle Scholar
  61. 61.
    A. Sahai, N. Goswami, Structural and vibrational properties of ZnO nanoparticles synthesized by the chemical precipitation method. Phys. E Low Dimensional Syst. Nanostruct. 58, 130–137 (2014)ADSCrossRefGoogle Scholar
  62. 62.
    R. Yousefi, A.K. Zak, F. Jamali-Sheini, Growth, X-ray peak broadening studies, and optical properties of Mg-doped ZnO nanoparticles. Mater. Sci. Semicond. Process. 16, 771–777 (2013)CrossRefGoogle Scholar
  63. 63.
    W.H. Chen, H.C. Cheng, C.F. Yu, The mechanical, thermodynamic, and electronic properties of cubic Au4Al crystal via first-principles calculations. J. Alloys Compd. 689, 857–864 (2016)CrossRefGoogle Scholar
  64. 64.
    F.C. Frank, The Frank—Read source. Proc. Royal Soc. London A Math. Phys. Sci. 371(1744),136–138 (1980)CrossRefGoogle Scholar
  65. 65.
    M.A. Meyers, K.K. Chawla, Mechanical Behavior of Materials, 2nd edition. (Cambridge University Press, 2008)Google Scholar
  66. 66.
    L.P. Kubin, G. Canova, M. Condat, B. Devincre, V. Pontikis, Y. Bréchet, Dislocation microstructures and plastic flow: a 3D simulation. Solid State Phenom. 23–24, 455–472 (1992)CrossRefGoogle Scholar
  67. 67.
    Kailas S V, Summary for Policymakers, in: Intergovernmental panel on climate change. Chapter 7. Dislocations and strengthening, Cambridge University Press, Cambridge, 1–30.Google Scholar
  68. 68.
    Z. Fan, Y. Wang, Y. Zhang, T. Qin, X.R. Zhou, G.E. Thompson, T. Pennycook, T. Hashimoto, Grain refining mechanism in the Al/Al–Ti–B system. Acta Mater. 84, 292–304 (2015)CrossRefGoogle Scholar
  69. 69.
    Q. Huang, C.M. Lilley, M. Bode, R. Divan, Surface and size effects on the electrical properties of Cu nanowires. J. Appl. Phys. 104, 23709 (2008)CrossRefGoogle Scholar
  70. 70.
    B. Feldman, S. Park, M. Haverty, S. Shankar, S.T. Dunham, Simulation of grain boundary effects on electronic transport in metals, and detailed causes of scattering. Phys. Status Solidi. 247, 1791–1796 (2010)CrossRefGoogle Scholar
  71. 71.
    R.C. Munoz, C. Arenas, Size effects and charge transport in metals: quantum theory of the resistivity of nanometric metallic structures arising from electron scattering by grain boundaries and by rough surfaces. Appl. Phys. Rev. 4, 011102 (2017)ADSCrossRefGoogle Scholar
  72. 72.
    C. Narula, R.P. Chauhan, Size dependent properties of one dimensional CdSe micro/nanostructures. Phys. B Condens. Matter. 521, 381–388 (2017)ADSCrossRefGoogle Scholar
  73. 73.
    F. Fuchs, N.F. Mott, The conductivity of thin metallic films according to the electron theory of metals. Math. Proc. Cambridge Philos. Soc. 34, 100 (1938)ADSCrossRefGoogle Scholar
  74. 74.
    M. Kumar, P.G. Ganesan, V.N. Singh, B.R. Mehta, J.P. Singh, Nanoparticle formation by swift heavy ion irradiation of indium oxide thin film. Nanotechnology. 19, 175606 (2008)ADSCrossRefGoogle Scholar
  75. 75.
    A.F. Mayadas, M. Shatzkes, Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces. Phys. Rev. B. 1, 1382–1389 (1970)ADSCrossRefGoogle Scholar
  76. 76.
    O. El-Atwani, J.E. Nathaniel JE, Leff AC, Hattar K, Taheri ML, Direct observation of sink-dependent defect evolution in nanocrystalline iron under irradiation. Sci. Rep. 7, 1–12 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha UniversityNew DelhiIndia

Personalised recommendations