Advertisement

Applied Physics A

, 125:790 | Cite as

Electronic and optical properties of Ge doped graphene and BN monolayers

  • L. Melo Oliveira
  • O. F. P. Santos
  • J. R. Martins
  • S. Azevedo
  • J. R. KaschnyEmail author
Article
  • 40 Downloads

Abstract

The effect of germanium doping on the properties of hexagonal boron nitride and graphene monolayers was investigated using ab initio calculations. For boron nitride, the obtained results indicate the formation of electronic states in the region of the gap, near the Fermi level. The incorporation of such impurity atoms also induces an apparent decrease in the energy gap and a significant reduction in the optical conductivity. The calculations indicate small absorbance for wavelengths from infrared to visible light. For the graphene layer, it has been obtained a null gap semi-metal material. This result can be associated with the corresponding displacement of the Fermi level. In addition, the germanium doped graphene shows similar optical properties when compared with the pristine layer.

Notes

Acknowledgements

The authors would like to thank the financial support provided by the Brazilian agencies CAPES, CNPq and INCT - Nanomateriais de Carbono.

References

  1. 1.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Modern Phys. 81, 109 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    Z. Guan, S. Ni, Appl Phys A Mater Sci Process 123, 678 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    Z. Guan, S. Ni, S. Hu, RSC Adv 7, 45393 (2017)CrossRefGoogle Scholar
  6. 6.
    T.H. Yuzyriha, D.W. Hess, Thin Solid Films 140, 199 (1986)ADSCrossRefGoogle Scholar
  7. 7.
    K. Watanabe, T. Taniguchi, H. Kanda, Nat. Mater. 3, 404 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Kubota, K. Watanabe, O. Tsuda, T. Taniguchi, Science 317, 932 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    L. Song, L. Ci, H. Lu, P.B. Sorokin, C. Jin, J. Ni, A.G. Kvashnin, D.G. Kvashnin, J. Lou, B.I. Yakobson, P.M. Ajayan, Nano Lett. 10, 3209 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    J.R. Soares, M.S. Dresselhaus, Braz. J. Phys. 44, 278 (2013)CrossRefGoogle Scholar
  11. 11.
    A. Acun, L. Zhang, P. Bampoulis, M. Farmanbar, A. van Houselt, A.N. Rudenko, M. Lingenfelder, G. Brocks, B. Poelsema, M.I. Katsnelson, H.J.W. Zandvliet, J. Phys. Condens. Matter 27, 4430029 (2015)CrossRefGoogle Scholar
  12. 12.
    B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, B. Aufray, Appl. Phys. Lett. 97, 223109 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Z. Guan, W. Wang, J. Huang, X. Wu, Q. Li, J. Yang, J. Phys. Chem. C 118, 28616 (2014)CrossRefGoogle Scholar
  14. 14.
    Z. Guan, S. Ni, S. Hu, ACS Omega 4, 10293 (2019)CrossRefGoogle Scholar
  15. 15.
    H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, P.D. Ye, ACS Nano 8, 4033 (2014)CrossRefGoogle Scholar
  16. 16.
    R.-F. Liu, C. Cheng, Phys. Rev. B 76, 014405 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    H. Cun, A. Hemmi, E. Miniussi, C. Bernard, B. Probst, K. Liu, D.T.L. Alexander, A. Kleibert, G. Mette, M. Weinl, M. Schreck, J. Osterwalder, A. Radenovic, T. Greber, Nano Lett. 18, 1205 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    E. Aktürk, C. Ataca, S. Ciraci, Appl. Phys. Lett. 96, 123112 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    J.G. Ren, Q.H. Wu, H. Tang, G. Hong, W. Zhang, S.T. Lee, J. Mater. Chem. A 1, 1821 (2013)CrossRefGoogle Scholar
  20. 20.
    M. Tripathi, A. Markevich, R. Böttger, S. Facsko, E. Besley, J. Kotakoski, T. Susi, ACS Nano 12, 4641 (2018)CrossRefGoogle Scholar
  21. 21.
    M. Sajjad, N. Singh, U. Schwingenschlögl, Appl. Phys. Lett. 112, 043101 (2018)ADSCrossRefGoogle Scholar
  22. 22.
    N. Singh, U. Schwingenschlögl, Adv. Mater. 29(1), 1600970 (2017)CrossRefGoogle Scholar
  23. 23.
    M.H. Mohammed, A.S. Al-Asadi, F.H. Hanoon, Superlattices Microstruct 129, 14 (2019)ADSCrossRefGoogle Scholar
  24. 24.
    M.H. Mohammed, A.S. Al-Asadi, F.H. Hanoon, Solid State Commun. 282, 28 (2018)ADSCrossRefGoogle Scholar
  25. 25.
    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)ADSCrossRefGoogle Scholar
  26. 26.
    J.P. Perdew, S. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  27. 27.
    J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon, D. Sanchez-Portal, J. Phys. Condens. Matter 14, 2745 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)ADSCrossRefGoogle Scholar
  29. 29.
    J. Junquera, O. Paz, D.S. Portal, E. Artacho, Phys. Rev. B 64, 235111 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    A. Pakdel, Y. Bando, D. Golberg, Chem. Soc. Rev. 43, 934 (2004)CrossRefGoogle Scholar
  31. 31.
    S.K. Gupta, H. He, D. Banyai, M. Si, R. Pandey, S.P. Karna, Nanoscale 6, 5526 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    S. Azevedo, J.R. Kaschny, C.M.C. de Castilho, F. de Brito Mota, Eur. Phys. J. B 67, 507 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    J. Wu, W. Zhang, Chem. Phys. Lett. 457, 169 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    J.R. Shewchuk, An Introduction to the Conjugate Gradient Method Without the Agonizing Pain (School of Computer Science Carnegie Mellon University Pittsburgh, Pittsburgh, 1994)Google Scholar
  35. 35.
    S. Azevedo, M.S.C. Mazzoni, R.W. Nunes, H. Chacham, Phys. Rev. B. 70, 205412 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    L.C. Gomes, S.S. Alexandre, H. Chacham, R.W. Nunes, J. Phys. Chem. C 117(22), 11770 (2013)CrossRefGoogle Scholar
  37. 37.
    J. Lemos de Melo, S. Azevedo, J.R. Kaschny, J. Solid State Chem. 217, 120 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    F. Bassani, G.P. Parravicini, Electronic States and Optical Transitions in Solids (Pergamon Press, Oxford, 1975)Google Scholar
  39. 39.
    E.D. Palik, Handbook of Optical Constants of Solids, vol. 1 (Academic Press, New York, 1998)Google Scholar
  40. 40.
    G. Grosso, G.P. Parravicini, Solid State Physics, 2nd edn. (Academic Press, Cambridge, 2013)Google Scholar
  41. 41.
    J. Wang, S. Deng, Z. Liu, Z. Liu, Natl Sci Rev 2 1, 22 (2015)CrossRefGoogle Scholar
  42. 42.
    T. Guerra, L. Leite, S. Azevedo, Superlattices Microstruct. 104, 281 (2017)CrossRefGoogle Scholar
  43. 43.
    S. Azevedo, F. Moraes, B. de LimaBernardo, Appl. Phys. A 117, 2095 (2014)ADSCrossRefGoogle Scholar
  44. 44.
    G.L. Zhao, D. Bagayoko, L. Yang, J. Appl. Phys. 99, 114311 (2006)ADSCrossRefGoogle Scholar
  45. 45.
    L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z.F. Wang, K. Storr, L. Balicas, F. Liu, P.M. Ajayan, Nat. Mater. 9, 430 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • L. Melo Oliveira
    • 1
  • O. F. P. Santos
    • 1
    • 2
  • J. R. Martins
    • 3
  • S. Azevedo
    • 1
  • J. R. Kaschny
    • 4
    Email author
  1. 1.Departamento de FísicaUniversidade Federal da ParaíbaJoão PessoaBrazil
  2. 2.Unidade Acadêmica de Serra TalhadaUniversidade Federal Rural de PernambucoSerra TalhadaBrazil
  3. 3.Departamento de FísicaUniversidade Federal do PiauíTeresinaBrazil
  4. 4.Instituto Federal da Bahia – Campus Vitoria da ConquistaVitória da ConquistaBrazil

Personalised recommendations