A cobalt-rich eutectic high-entropy alloy in the system Al–Co–Cr–Fe–Ni
Article
First Online:
- 131 Downloads
Abstract
By using the well-established CALPHAD methodology, a cobalt-rich eutectic high-entropy alloy is designed and made for the system Al–Co–Cr–Fe–Ni. Microstructural studies show that the designed alloy has a dual FCC/BCC phase structure and is composed of nanostructured lamellar-irregular regions. The mechanical properties of the alloy are investigated by compression test. The ultimate strength and the ductility of the alloy are measured to be 2150 MPa and 40%, respectively. The effect of Al concentration on the microstructure and mechanical properties of the alloy is investigated.
Notes
Supplementary material
References
- 1.B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377, 213–218 (2004)Google Scholar
- 2.J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(5), 299–303 (2004)Google Scholar
- 3.D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511 (2017)Google Scholar
- 4.Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1–93 (2014)Google Scholar
- 5.Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, High-entropy alloy: challenges and prospects. Mater. Today 19(6), 349–362 (2016)Google Scholar
- 6.Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, B. Wen, Z. Wang, J. Jie, Z. Cao, H. Ruan, T. Li, A promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci. Rep. 4, 6200 (2014)ADSGoogle Scholar
- 7.A. Manzoni, H. Daoud, R. Volkl, U. Glatzel, N. Wanderka, Phase separation in equiatomic AlCoCrFeNi high-entropy alloy. Ultramicroscopy 132, 212–215 (2013)Google Scholar
- 8.I.S. Wani, T. Bhattacharjee, S. Sheikh, P.P. Bhattacharjee, S. Guo, N. Tsuji, Tailoring nanostructures and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy using thermo-mechanical processing. Mater. Sci. Eng. A 675, 99–109 (2016)Google Scholar
- 9.I.S. Wani, T. Bhattacharjee, S. Sheikh, Y.P. Lu, S. Chatterjee, P.P. Bhattacharjee, S. Guo, N. Tsuji, Ultrafine-grained AlCoCrFeNi2.1 eutectic high entropy alloy. Mater. Res. Lett. 4(3), 174–179 (2016)Google Scholar
- 10.Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Z. Cao, T. Li, Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater. 124, 143–150 (2017)Google Scholar
- 11.T. Bhattacharjee, I.S. Wani, S. Sheikh, I.T. Clark, T. Okawa, S. Guo, P.P. Bhattacharjee, N. Tsuji, Simultaneous strength-ductility enhancement of a nano-lamellar AlCoCrFeNi2.1 eutectic high entropy alloy by cryo-rolling and annealing. Sci. Rep. 8, 3276 (2018)ADSGoogle Scholar
- 12.D. Liu, P. Yu, G. Li, P.K. Liaw, R. Liu, High-temperature high-entropy alloys AlxCo15Cr15Ni70−x based on the Al–Ni binary system. Mater. Sci. Eng. A 724, 283–288 (2018)Google Scholar
- 13.X. Jin, Y. Zhou, L. Zhang, X. Du, B. Li, A novel Fe20Co20Ni41Al19 eutectic high entropy alloy with excellent tensile properties. Mater. Lett. 216, 144–146 (2018)Google Scholar
- 14.Y. Lu, H. Jiang, S. Guo, T. Wang, Z. Cao, T. Li, A new strategy to design eutectic high-entropy alloys using mixing enthalpy. Intermetallics 91, 124–128 (2017)Google Scholar
- 15.H. Jiang, K. Han, X. Gao, Y. Lu, Z. Cao, M.C. Gao, J.A. Hawk, T. Li, A new strategy to design eutectic high-entropy alloys using simple mixture method. Mater. Design 142, 101–105 (2018)Google Scholar
- 16.X. Jin, Y. Zhou, L. Zhang, X. Dua, B. Li, A new pseudo binary strategy to design eutectic high entropy alloys using mixing enthalpy and valence electron concentration. Mater. Design 143, 49–55 (2018)Google Scholar
- 17.Z. Yang, Z. Wang, Q. Wu, T. Zheng, P. Zhao, J. Zhao, J. Chen, Enhancing the mechanical properties of casting eutectic high entropy alloys with Mo addition. Appl. Phys. A 125, 208 (2019)ADSGoogle Scholar
- 18.C. Zhang, M.C. Gao, CALPHAD modeling of high-entropy alloys, in High-Entropy Alloys: Fundamentals and Applications, 1st edn., ed. by M.C. Gao, J.W. Yeh, P.K. Liaw, Y. Zhang (Springer International Publishing, Cham, 2016), pp. 399–444Google Scholar
- 19.C. Zhang, F. Zhang, S. Chen, W. Cao, Computational thermodynamics aided high-entropy alloy design. JOM 64(7), 839–845 (2012)Google Scholar
- 20.F. Zhang, C. Zhang, S.L. Chen, J. Zhu, W.S. Cao, U.R. Kattner, An understanding of high entropy alloys from phase diagram calculations. CALPHAD 45, 1–10 (2014)Google Scholar
- 21.O.N. Senkov, J.D. Miller, D.B. Miracles, C. Woodward, Accelerated exploration of multi-principal element alloys for structural applications. CALPHAD 50, 32–48 (2015)Google Scholar
- 22.C. Zhang, F. Zhang, H. Diao, M.C. Gao, Z. Tang, P.K. Liaw, Understanding phase stability of Al–Co–Cr–Fe–Ni high entropy alloys. Mater. Design 109, 425–433 (2016)Google Scholar
- 23.M.C. Gao, C. Zhang, P. Gao, F. Zhang, L.Z. Ouyang, M. Widom, J.A. Hawk, Thermodynamics of concentrated solid solution alloys. Curr. Opin. Solid State Mater. Sci. 21(5), 238–251 (2017)ADSGoogle Scholar
- 24.H. Baker (ed.), ASM Handbook, Alloy Phase Diagrams, vol. 3 (ASM International, Materials Park, 1992)Google Scholar
- 25.G.V. Raynor, V.G. Rivilin, Critical evaluation of constitution of Aluminium–Cobalt–Iron system. Int. Met. Rev. 27(3), 169–183 (1982)Google Scholar
- 26.L. Zhang, Y. Du, Thermodynamic description of the Al–Fe–Ni system over the whole composition and temperature ranges: modeling coupled with key experiment. Comput. Coupling Phase Diagr. Thermochem. 31, 529–540 (2007)Google Scholar
- 27.N. Dupin, I. Ansara, B. Sundman, Thermodynamic re-assessment of the ternary system AI–Cr–Ni. Calphad 25(2), 279–298 (2001)Google Scholar
- 28.Y. Wang, G. Cacciamani, Thermodynamic modeling of the Al–Cr–Ni system over the entire composition and temperature range. J. Alloys Compd. 688, 422–435 (2016)Google Scholar
- 29.M.S. Merchant, M.R. Notis, A. Review, Constitution of the Al–Cr–Ni system. Mater. Sci. Eng. 66, 47–60 (1984)Google Scholar
- 30.X. Jin, J. Bi, L. Zhang, Y. Zhou, X. Du, Y. Liang, B. Li, A new CrFeNi2Al eutectic high entropy alloy system with excellent mechanical properties. J. Alloys Compd. 770, 655–661 (2019)Google Scholar
- 31.JMatPro® the Materials Property Simulation Package, Sente Software Ltd., Surrey Technology Center, 40 Occam Road, Guildford, UKGoogle Scholar
- 32.N. D’Souza, H.B. Dong, Solidification path in third-generation Ni-based superalloys, with an emphasis on last stage solidification. Scr. Mater. 56(1), 41–44 (2007)Google Scholar
- 33.N. Saunders, U.K.Z. Guo, X. Li, A.P. Miodownik, JPh Schillé, Using JMatPro to model materials properties and behavior. JOM 55(12), 60–65 (2003)ADSGoogle Scholar
- 34.Z. Guo, N. Saunders, A.P. Miodownik, J.P. Schille, Modelling of materials properties and behaviour critical to casting simulation. Mater. Sci. Eng. A 413–414, 465–469 (2005)Google Scholar
- 35.N. D’Souza, M. Lekstrom, H.B. Dong, An analysis of measurement of solute segregation in Ni-base superalloys using X-ray spectroscopy. Mater. Sci. Eng. A 490, 258–265 (2008)Google Scholar
- 36.Z. Guo, N. Saunders, J.P. Schillé, A.P. Miodownik, Material properties for process simulation. Mater. Sci. Eng. A 499, 7–13 (2009)Google Scholar
- 37.J. Yu, X. Li, Modelling of the precipitated phases and properties of Al–Zn–Mg–Cu alloys. J. Phase Equilib. Diffus. 32, 350–360 (2011)Google Scholar
- 38.I.S. Wani, T. Bhattacharjee, S. Sheikh, I.T. Clark, M.H. Park, T. Okawa, S. Guo, P.P. Bhattacharjee, N. Tsuji, Cold-rolling and recrystallization textures of a nano-lamellar AlCoCrFeNi2.1 eutectic high entropy alloy. Intermetallics 84, 42–51 (2017)Google Scholar
- 39.A. Patel, I. Wani, S.R. Reddy, S. Narayanaswamy, A. Lozinko, R. Saha, S. Guo, P.P. Bhattacharjee, Strain-path controlled microstructure, texture and hardness evolution in cryo-deformed AlCoCrFeNi2.1 eutectic high entropy alloy. Intermetallics 97, 12–21 (2018)Google Scholar
- 40.M.H. Tsai, K.Y. Tsai, C.W. Tsai, C. Lee, C.C. Juan, J.W. Yeh, Criterion for sigma phase formation in Cr- and V containing high-entropy alloys. Mater. Res. Lett. 1(4), 207–212 (2013)Google Scholar
- 41.M.H. Tsai, K.C. Chang, J.H. Li, R.C. Tsai, A.H. Cheng, A second criterion for sigma phase formation in high-entropy alloys. Mater. Res. Lett. 4(2), 90–95 (2016)Google Scholar
- 42.W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, J.W. Yeh, Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics 26, 44–51 (2012)Google Scholar
- 43.H. Bei, G.M. Pharr, E.P. George, A review of directionally solidified intermetallic composites for high-temperature structural applications. J. Mater. Sci. 39(12), 3975–3984 (2004)ADSGoogle Scholar
- 44.D.R. Johnson, X.F. Chen, B.F. Oliver, R.D. Noebe, J.D. Whittenberger, Processing and mechanical properties of in situ composites from the NiAlCr and the NiAl(Cr, Mo) eutectic systems. Intermetallics 3(2), 99–113 (1995)Google Scholar
- 45.J.R. Davis, Nickel, Cobalt, and Their Alloys (Materials Park, OH, ASM international, 2000)Google Scholar
- 46.D.B. Miracle, J.D. Miller, O.N. Senkov, C. Woodward, M.D. Uchic, J. Tiley, Exploration and development of high entropy alloys for structural applications. Entropy 16, 494–525 (2014)ADSGoogle Scholar
- 47.O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Refractory high-entropy alloys. Intermetallics 18, 1758–1765 (2010)Google Scholar
- 48.O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19, 698–706 (2011)Google Scholar
Copyright information
© Springer-Verlag GmbH Germany, part of Springer Nature 2019