Advertisement

Applied Physics A

, 125:789 | Cite as

Strain effect on the electronic and optical properties of ATaO2N (A = Ca, Sr, and Ba): insights from the first-principles

  • Ze-Cheng Zhao
  • Chuan-Lu YangEmail author
  • Qing-Tian Meng
  • Mei-Shan Wang
  • Xiao-Guang Ma
Article
  • 58 Downloads

Abstract

The effect of strain on the electronic and optical properties of ATaO2N (A = Ca, Sr and Ba) is investigated using the first-principles hybridization functional calculations. The electronic and optical properties under the strains of − 8 to  + 8% in (100) and (010) directions are investigated. The results demonstrate that the band energy gap, band edges, absorption, reflectivity, and refractive index are obviously affected by the strains. Moreover, the effects of strains in (100) direction on all the considered properties of ATaO2N are more obvious than those in (010) direction. The enhanced absorption in the visible light region is also found, which implies that ATaO2N can well respond to the visible light. The present findings could provide a helpful reference to design photoelectronic materials with ATaO2N by strain engineering.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) under grant nos. NSFC-11874192 and NSFC-11574125, as well as the Taishan Scholars project of Shandong Province (ts201511055).

Compliance with ethical standards

Conflict of interest

There are no conflicts to declare.

References

  1. 1.
    Y.-I. Kim, P.M. Woodward, K.Z. Baba-Kishi, C.W. Tai, Chem. Mater. 16, 1267–1276 (2004)Google Scholar
  2. 2.
    M.R. Brophy, S.M. Pilgrim, W.A. Schulze, J. Am. Ceram. Soc. 94, 4263–4268 (2011)Google Scholar
  3. 3.
    Y.-I. Kim, Ceram. Int. 40, 5275–5281 (2014)Google Scholar
  4. 4.
    M. Higashi, R. Abe, T. Takata, K. Domen, Chem. Mater. 21, 1543–1549 (2009)Google Scholar
  5. 5.
    D. Yamasita, T. Takata, M. Hara, J.N. Kondo, K. Domen, Solid State Ionics 172, 591–595 (2004)Google Scholar
  6. 6.
    Y. Mizuno, H. Wagata, K. Yubuta, N. Zettsu, S. Oishi, K. Teshima, CrystEngComm 15, 8133–8138 (2013)Google Scholar
  7. 7.
    M. Higashi, R. Abe, K. Teramura, T. Takata, B. Ohtani, K. Domen, Chem. Phys. Lett. 452, 120–123 (2008)ADSGoogle Scholar
  8. 8.
    M. Higashi, K. Domen, R. Abe, J. Am. Chem. Soc. 135, 10238–10241 (2013)Google Scholar
  9. 9.
    D. Oka, Y. Hirose, T. Fukumura, T. Hasegawa, Cryst. Growth Des. 14, 87–90 (2014)Google Scholar
  10. 10.
    F. Oehler, R. Naumann, R. Köferstein, D. Hesse, S.G. Ebbinghaus, Mater. Res. Bull. 73, 276–283 (2016)Google Scholar
  11. 11.
    J. Xu, C. Pan, T. Takata, K. Domen, Chem. Commun. 51, 7191–7194 (2015)Google Scholar
  12. 12.
    A. Kubo, G. Giorgi, K. Yamashita, Chem. Mater. 29, 539–545 (2017)Google Scholar
  13. 13.
    H. Wolff, R. Dronskowski, J. Comput. Chem. 29(13), 2260–2267 (2008)Google Scholar
  14. 14.
    D. Oka, Y. Hirose, H. Kamisaka, T. Fukumura, K. Sasa, S. Ishii, Sci. Rep. 4(2969), 4987 (2014)Google Scholar
  15. 15.
    E. Guenther, R. Hagenmayer, M. Jansen, Z. Anorg, Allg. Chem. 626(7), 1519–1525 (2000)Google Scholar
  16. 16.
    S.G. Ebbinghaus, R. Aguiar, A. Weidenkaff, S. Gsell, A. Reller, Solid State Sci. 10(6), 709–716 (2008)ADSGoogle Scholar
  17. 17.
    A. Ziani, C.L. Paven, L.L. Gendre, F. Marlec, R. Benzerga, F. Tessier, F. Cheviré, M.N. Hedhili, A.T. Garcia-Esparza, S. Melissen, P. Sautet, T.L. Bahers, K. Takanabe, Chem. Mater. 29, 3989–3998 (2017)Google Scholar
  18. 18.
    R. Marchand, F. Pors, Y. Laurent, O. Regreny, J. Lostec, J.M. Haussonne, J. Phys. Colloques 47, C1-901–C1-905 (1986)Google Scholar
  19. 19.
    F. Pors, R. Marchand, Y. Laurent, P. Bacher, G. Roult, Mater. Res. Bull. 23(10), 1447–1450 (1988)Google Scholar
  20. 20.
    X. Gouin, R. Marchand, Y. Laurent, F. Gervais, Solid State Commun. 93, 857–859 (1995)ADSGoogle Scholar
  21. 21.
    G. Hitoki, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, K. Domen, Electrochemistry 70(6), 460–462 (2002)Google Scholar
  22. 22.
    T. Matoba, K. Maeda, K. Domen, Chem. Eur. J. 17, 14731–14735 (2011)Google Scholar
  23. 23.
    Y.-I. Kim, W. Si, P.M. Woodward, E. Sutter, S. Park, T. Vogt, Chem. Mater. 19, 618–623 (2007)Google Scholar
  24. 24.
    B.B. Dong, Y. Qi, J.Y. Cui, B.D. Liu, F.Q. Xiong, X. Jiang, Z. Li, Y.J. Xiao, F.X. Zhang, C. Li, Dalton Trans. 46, 10707–10713 (2017)Google Scholar
  25. 25.
    A.M. Hafez, N.M. Salem, N.K. Allam, Phys. Chem. Chem. Phys. 16, 18418 (2014)Google Scholar
  26. 26.
    I.E. Castelli, M. Pandey, K.S. Thygesen, K.W. Jacobsen, Phys. Rev. B 91, 165309-1–165309-6 (2015)ADSGoogle Scholar
  27. 27.
    C.M. Fang, G.A. de Wijs, E. Orhan, G. de With, R.A. de Groot, H.T. Hintzen, R. Marchand, J. Phys. Chem. Solids 64, 281–286 (2003)ADSGoogle Scholar
  28. 28.
    G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169–11186 (1996)ADSGoogle Scholar
  29. 29.
    P.E. Blöchl, C.J. Först, J. Schimpl, Mater. Sci. 26, 33–41 (2002)Google Scholar
  30. 30.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 3865–3868 (1997)Google Scholar
  31. 31.
    J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003)ADSGoogle Scholar
  32. 32.
    B. Modak, S.K. Ghosh, J. Phys. Chem. C 120, 6920–6929 (2016)Google Scholar
  33. 33.
    J. Paier, M. Marsman, K. Hummer, G. Kresse, I.C. Gerber, J.G. Ángyán, J. Chem. Phys. 124, 154709 (2006)ADSGoogle Scholar
  34. 34.
    A.M. Hafez, A.F. Zedan, S.Y. Qaradawi, N.M. Salem, N.K. Allam, Energy Convers. Manag. 122, 207–214 (2016)Google Scholar
  35. 35.
    E.A. Zhurova, V.E. Zavodnik, V.G. Tsirel'Son, Kristallografiya 40(5), 753–760 (1995)ADSGoogle Scholar
  36. 36.
    X.F. Fan, W.T. Zheng, X. Chen, D.J. Singh, PLoS ONE 9(3), e91423-1–e91423-10 (2014)ADSGoogle Scholar
  37. 37.
    Y.X. Han, C.L. Yang, Y.T. Sun, M.S. Wang, X.G. Ma, J. Alloys Compd. 585, 503–509 (2014)Google Scholar
  38. 38.
    H.J. Conley, B. Wang, J.I. Ziegler, R.F. Haglund, S.T. Pantelides, K.I. Bolotin, Nano Lett. 13, 3626–3630 (2013)ADSGoogle Scholar
  39. 39.
    K.L. He, C. Poole, K.F. Mak, J. Shan, Nano Lett. 13(6), 2931–2936 (2013)ADSGoogle Scholar
  40. 40.
    D. Lloyd, X.H. Liu, J.W. Christopher, L. Cantley, A. Wadehra, B.L. Kim, B.B. Goldberg, A.K. Swan, J.S. Bunch, Nano lett. 16(9), 5836–5841 (2016)ADSGoogle Scholar
  41. 41.
    Y.C. Wu, H.R. Fuh, D. Zhang, C.O. Coileáin, H.J. Xu, J. Cho et al., Nano Energy 32, 157–164 (2017)Google Scholar
  42. 42.
    D. Maeso, S. Pakdel, H. Santos, N. Agraït, J.J. Palacios, E. Prada, G. Rubio-bollinger, Nanotechnology (2019).  https://doi.org/10.1088/1361-6528/ab0bc1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Physics and ElectronicsShandong Normal UniversityJinanPeople’s Republic of China
  2. 2.School of Physics and Optoelectronics EngineeringLudong UniversityYantaiPeople’s Republic of China

Personalised recommendations