Applied Physics A

, 125:866 | Cite as

New transparent rare earth glasses for radiation protection applications

  • M. S. Al-BuriahiEmail author
  • H. O. Tekin
  • Esra Kavaz
  • Baris T. Tonguc
  • Y. S. Rammah


In this paper, we have reported \(65\hbox {B}_2\hbox {O}_3\)\(12.5\hbox {TeO}_2\)\(12.5\hbox {Bi}_2\hbox {O}_3\)\(5\hbox {Na}_2\hbox {O}\)\(5\hbox {NdCl}_3\) and \(67\hbox {TeO}_2\)\(20\hbox {WO}_3\)\(10\hbox {Li}_2\hbox {O}\)\(3\hbox {PrO}_{11}\) glasses to serve in radiation protection applications. Mass attenuation coefficient (\(\mu /\rho\)) of the proposed glasses was obtained in the photon energy range of 0.015–15 MeV using GEANT4 Monte Carlo simulation. The simulation results were compared with those calculated by WinXCOM program. The correlation factor (\({R}^2\)) between the simulation and the theoretical values was found to be close to one referring to the high accuracy of the present results. Other essential radiation shielding parameters such as the effective atomic number (\({Z}_\mathrm{eff}\)), half-value layer, and neutron removal cross section (\(\sum _R\)) were calculated for the proposed glass samples. Additionally, G-P method was used to generate exposure buildup factor and energy absorption buildup factor for each proposed glass in the photon energy range of 0.015–15 MeV up to penetration path of 40 mfp. Radiation shielding competence of our glasses was compared with conventional shielding materials, other rare earth glasses, and newly developed HMO glasses. The results reveal that our proposed glass coded as TWLP shows promising shielding competence against both gamma rays and neutrons.


  1. 1.
    J. Singh, H. Singh, J. Sharma, T. Singh, P.S. Singh, Prog. Nucl. Energy 106, 387 (2018)CrossRefGoogle Scholar
  2. 2.
    V. Singh, S. Shirmardi, M. Medhat, N. Badiger, Vacuum 119, 284 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    S. Olukotun, S. Gbenu, F. Ibitoye, O. Oladejo, H. Shittu, M. Fasasi, F. Balogun, Nucl. Eng. Technol. 50(6), 957 (2018)CrossRefGoogle Scholar
  4. 4.
    M. Sayyed, G. Lakshminarayana, I. Kityk, M. Mahdi, Radiat. Phys. Chem. 139, 33 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    M.S. Al-Buriahi, K.S. Mann, Mater. Res. Express. 6(10), 105206 (2019)CrossRefGoogle Scholar
  6. 6.
    M. Kurudirek, J. Alloys Compd. 727, 1227 (2017)CrossRefGoogle Scholar
  7. 7.
    R. El-Mallawany, M. Sayyed, M. Dong, Y. Rammah, Radiat. Phys. Chem. 151, 239 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    E. Kavaz, Radiat. Phys. Chem. 160, 112 (2019)ADSCrossRefGoogle Scholar
  9. 9.
    N. Chanthima, J. Kaewkhao, P. Limkitjaroenporn, S. Tuscharoen, S. Kothan, M. Tungjai, S. Kaewjaeng, S. Sarachai, P. Limsuwan, Radiat. Phys. Chem. 137, 72 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    A. Ali, Y. Rammah, M. Shaaban, J. Non-Cryst. Solids 514, 52 (2019)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Rammah, M. Sayyed, A. Ali, H. Tekin, R. El-Mallawany, Appl. Phys. A 124(12), 832 (2018)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Rammah, A. Ali, R. El-Mallawany, A. Abdelghany, J. Mol. Struct. 1175, 504 (2019)ADSCrossRefGoogle Scholar
  13. 13.
    S. Meena, B. Bhatia, J. Pure Appl. Ind. Phys 6(10), 175 (2016)Google Scholar
  14. 14.
    Z.I. Takai, R.S. Kaundal, M.K. Mustafa, S. Asman, A. Idris, Y. Shehu, J. Mohammad, M.G. Idris, M. Said, Mater. Res. 22, 1 (2019)Google Scholar
  15. 15.
    S. Kaewjaeng, S. Kothan, W. Chaiphaksa, N. Chanthima, R. Rajaramakrishna, H. Kim, J. Kaewkhao, Radiat. Phys. Chem. 160, 41 (2019)ADSCrossRefGoogle Scholar
  16. 16.
    M.D. Hassib, K.M. Kaky, A. Kumar, E. Şakar, M. Sayyed, S. Baki, M. Mahdi, Phys. B: Condens. Matter 567, 37 (2019)ADSCrossRefGoogle Scholar
  17. 17.
    B.T. Tonguc, H. Arslan, M.S. Al-Buriahi, Radiat. Phys. Chem. 153, 86 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    M. Sayyed, K.M. Kaky, M. Mhareb, A.H. Abdalsalam, N. Almousa, G. Shkoukani, M.A. Bourham, Radiat. Phys. Chem. 161, 77 (2019)ADSCrossRefGoogle Scholar
  19. 19.
    M.S. Al-Buriahi, B.T. Tonguc, Appl. Phys. A 125(7), 482 (2019)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Rammah, M. Sayyed, A. Abohaswa, H. Tekin, Appl. Phys. A 124(9), 650 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Rammah, A. Abouhaswa, M. Sayyed, H. Tekin, R. El-Mallawany, J. Non-Cryst. Solids 509, 99 (2019)ADSCrossRefGoogle Scholar
  22. 22.
    Y. Rammah, A. Askin, A. Abouhaswa, F. El-Agawany, M. Sayyed, Appl. Phys. A 125(8), 523 (2019)ADSCrossRefGoogle Scholar
  23. 23.
    M.S. Al-Buriahi, Y.S. Rammah, Appl Phys A 125(10), 717 (2019)ADSCrossRefGoogle Scholar
  24. 24.
    H. Tekin, O. Kilicoglu, E. Kavaz, E. Altunsoy, M. Almatari, O. Agar, M. Sayyed, Results Phys. 12, 1797 (2019)ADSCrossRefGoogle Scholar
  25. 25.
    S. Nakayama, T. Watanabe, T. Asahi, H. Kiyono, Y.L. Aung, M. Sakamoto, Ceram. Int. 36(8), 2323 (2010)CrossRefGoogle Scholar
  26. 26.
    S. Barbi, C. Mugoni, M. Montorsi, M. Affatigato, C. Gatto, C. Siligardi, J. Non-Cryst. Solids 481, 239 (2018)ADSCrossRefGoogle Scholar
  27. 27.
    P. Kaur, D. Singh, T. Singh, Radiat. Phys. Chem. 144, 336 (2018)ADSCrossRefGoogle Scholar
  28. 28.
    S. Ibrahim, Y. Rammah, I. Hager, R. El-Mallawany, J. Non-Cryst. Solids 498, 443 (2018)ADSCrossRefGoogle Scholar
  29. 29.
    S.A. Issa, A. Mostafa, M. Dong, V. Singh, H. Tekin, Radiat. Eff. Defects Solids 173(5–6), 510 (2018)ADSCrossRefGoogle Scholar
  30. 30.
    O. Kilicoglu, H.O. Tekin, V.P. Singh, Eur. J. Sci. Technol. 173(15), 591 (2019)CrossRefGoogle Scholar
  31. 31.
    A. Aşkın, M. Sayyed, A. Sharma, M. Dal, R. El-Mallawany, M. Kaçal, J. Non-Cryst. Solids 521, 119489 (2019)ADSCrossRefGoogle Scholar
  32. 32.
    J. Li, M. Huang, R. Hou, X. Ouyang, Radiat. Phys. Chem. 161, 23 (2019)ADSCrossRefGoogle Scholar
  33. 33.
    S. Agostinelli, J. Allison, Ka Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand et al., Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 506(3), 250 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    M. Kurudirek, Radiat. Phys. Chem. 102, 139 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    M.S. Al-Buriahi, Y.S. Rammah, Appl Phys A 125(10), 678 (2019)ADSCrossRefGoogle Scholar
  36. 36.
    S. Manohara, S. Hanagodimath, L. Gerward, S. Subhranshu, Mater. Today: Proc. 10, 20 (2019)Google Scholar
  37. 37.
    ANSI/ANS-6.4.3. Gamma ray attenuation coefficient and buildup factors for engineering materials (1991) Google Scholar
  38. 38.
    J. Wood, Computational Methods in Reactor Shielding (Elsevier, Amsterdam, 2013)Google Scholar
  39. 39.
    A. El-Khayatt, Ann. Nucl. Energy 37(2), 218 (2010)CrossRefGoogle Scholar
  40. 40.
    J. Park, H. Kim, S. Kim, P. Limsuwan, J. Kaewkhao, Procedia Eng. 32, 855 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsSakarya UniversitySakaryaTurkey
  2. 2.VSHS Medical Imaging Department Radiotherapy DepartmentUskudar UniversityIstanbulTurkey
  3. 3.Deparment of Physics, Faculty of ScienceAtaturk UniversityErzurumTurkey
  4. 4.Physics Department, Faculty of ScienceMenoufia UniversityShibin El KomEgypt

Personalised recommendations