Applied Physics A

, 125:772 | Cite as

An ovonic threshold switching selector based on Se-rich GeSe chalcogenide

  • Bing Song
  • Hui Xu
  • Sen Liu
  • Haijun Liu
  • Qi Liu
  • Qingjiang LiEmail author
Rapid communications


In this work, an ovonic threshold switching (OTS) selector with simply binary GeSe has been demonstrated. According to mean coordination number theory, Se-rich GeSe was chosen as the dielectric layer. Meanwhile, annealing process was attempted to reduce defect quantity and enhance atomic structure stability. The results showed improving selector performance such as low off current (< 0.1 nA at ~ 1 V), high on current (> 1 mA at ~ 2 V), extremely sharp switching slope (< 3 mv/dec), fast operating speed (turn-on time < 100 ns). In addition, the mechanism of trap-assisted Poole–Frenkel conduction has been deduced to explain the reasons for improvements induced by annealing.



This work was supported by National Natural Science Foundation of China (Grant no. 61604177, 61704191 and 61471377).


  1. 1.
    S. Ambrogio, P. Narayanan, H. Tsai, R.M. Shelby, I. Boybat, C. Nolfo et al., Equivalent-accuracy accelerated neuralnetwork training using analogue memory. Nature 558(7708), 60–67 (2018)ADSCrossRefGoogle Scholar
  2. 2.
    S. Liu, N. Lu, X. Zhao, H. Xu, W. Banerjee, H. Lv et al., Eliminating negative-SET behavior by suppressing nanofilament overgrowth in cation-based memory. Adv. Mater. 28(48), 10623–10629 (2016)CrossRefGoogle Scholar
  3. 3.
    C. Li, M. Hu, Y. Li, H. Jiang, N. Ge, E. Montgomery et al., Analogue signal and image processing with large memristor crossbars. Nat. Electron. 1(1), 52–59 (2018)CrossRefGoogle Scholar
  4. 4.
    P.M. Sheridan, F. Cai, C. Du, W. Ma, Z. Zhang, W.D. Lu, Sparse coding with memristor networks. Nat. Technol. 12(8), 784–789 (2017)Google Scholar
  5. 5.
    C. Li, D. Belkin, Y. Li, P. Yan, M. Hu, N. Ge et al., Efficient and self-adaptive in situ learning in multilayer memristor neural networks. Nat. Commun. 9(1), 2385 (2018)ADSCrossRefGoogle Scholar
  6. 6.
    G.W. Burr, R.S. Shenoy, K. Virwani, P. Narayanan, A. Padilla, B. Kurdi et al., Access devices for 3D crosspoint memory. J. Vac. Sci. Technol. B 32(4), 040802 (2014)CrossRefGoogle Scholar
  7. 7.
    R. Midya, Z. Wang, J. Zhang, S.E. Sacel’ev, C. Li, M. Rao et al., Anatomy of Ag/Hafnia-based selectors with 1010 nonlinearity. Adv. Mater. 29(12), 1604457 (2017)CrossRefGoogle Scholar
  8. 8.
    S.R. Ovshinsky, Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21(20), 1450–1453 (1968)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Koo, S. Lee, S. Park, M. Yang, H. Hwang, Simple binary ovonic threshold switching material site and its excellent selector performance for high-density memory array application. IEEE Electron Device Lett. 38(5), 568–571 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    S. Kim, Y.-B. Kim, K. M. Kim, S.-J. Kim, S. R. Lee, M. Chang, et al., Performance of threshold switching in chalcogenide glass for 3D stackable selector. Symposium on VLSI Technology Digest, 2013, pp. T240–T241Google Scholar
  11. 11.
    M.-J. Lee, D. Lee, S.-H. Cho, J.-H. Hur, S.-M. Lee, D.H. Seo et al., A plasma-treated chalcogenide switch device for stackable scalable 3D nanoscale memory. Nat. Commun. 4(2629), 1–8 (2013)Google Scholar
  12. 12.
    H.-W. Ahn, D.S. Jeong, B.-K. Cheong, S.-D. Kim, S.-Y. Shin, H. Lim et al., A study on the scalability of a selector device using threshold switching in Pt/GeSe/Pt. ECS Solid State Lett. 2(9), N31–N33 (2013)CrossRefGoogle Scholar
  13. 13.
    S.-D. Kim, H.-W. Ahn, S.Y. Shin, D.S. Jeong, S.H. Son, H. Lee, Effect of Ge concentration in GexSe1 − x chalcogenide glass on the electronic structures and the characteristics of ovonic threshold switching (OTS) devices. ECS Solid State Lett. 2(10), Q75–Q77 (2013)CrossRefGoogle Scholar
  14. 14.
    J. Seo, S.W. Cho, H.-W. Ahn, B.-K. Cheong, S. Lee, A study on the interface between an amorphous chalcogenide and the electrode: effect of the electrode on the characteristics of the ovonic threshold switch (OTS). J. Alloy. Compd. 691, 880–883 (2016)CrossRefGoogle Scholar
  15. 15.
    N. S. Avasarala, B. Govoreanu, K. Opsomer, W. Devulder, S. Clima, C. Detavernier, et al., Doped GeSe materials for selector applications. IEEE Proceedings of ESSDERC, 2017, pp. 168–171Google Scholar
  16. 16.
    B. Govoreanu, G. L. Donadio, K. Opsomer, W. Devulder, V. V. Afanas’ev, T. Witters, et al., Thermally stable integrated Se-based OTS selectors with > 20 MA/cm2 current drive, > 3 × 103 half-bias nonlinearity, tunable threshold voltage and excellent endurance. Symposium on VLSI Technology Digest, 2017, pp. T92–T93Google Scholar
  17. 17.
    A. Verdy, G. Navarro, V. Sousa, P. Noe, M. Bernard, F. Fillot, et al., Improved electrical performance thanks to Sb and N doping in Se-Rich GeSe-Based OTS selector devices. Proceedings on IEEE International Memory Workshop (IMW), 2017, pp. 1–4Google Scholar
  18. 18.
    M.F. Thorpe, Continuous deformations in random networks. J. NonCryst. Solids 57(3), 355–370 (1983)ADSCrossRefGoogle Scholar
  19. 19.
    K. Tanaka, Structural phase-transitions in chalcogenide glasses. Phys. Rev. B 39(2), 1270–1279 (1989)ADSCrossRefGoogle Scholar
  20. 20.
    P. Boolchand, D.G. Georgiev, T. Qu, F. Wang, L.C. Cai, S. Chakravarty, Nanoscale phase separation effects near r = 2.4 and 2.67, and rigidity transitions in chalcogenide glasses. Comptes Rendus Chim. 5(11), 713–724 (2002)CrossRefGoogle Scholar
  21. 21.
    B. Song, H. Xu, H. Liu, Q. Li, Impact of threshold voltage variation on 1S1R crossbar array with threshold switching selectors. Appl. Phy. A 123(5), 356 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    B. Govoreanu, G.S. Kar, Y-Y. Chen, V. Paraschiv, S. Kubicek, A. Fantini, et al., 10 × 10 nm2 Hf/HfOx crossbar resistive RAM with excellent performance, reliability and low-energy operation. Proceedings of IEDM, 2011, pp. 31.6.1–31.6.4Google Scholar
  23. 23.
    S. Lee, D.S. Jeong, J. Jeong, Z. Wu, Y.W. Park, A study on the temperature dependence of the threshold switching characteristics of Ge2Sb2Te5. Appl. Phys. Lett. 96(2), 023501 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    D. Adler, Amorphous semiconductors. Crit. Rev. Solid State Sci. 2(3), 317–465 (1971)CrossRefGoogle Scholar
  25. 25.
    D. Ielmini, Y. Zhang, Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices. J. Appl. Phys. 102(5), 054517 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    H. Fritzsche, Why are chalcogenide glasses the material of choice for Ovonic switching devices? J. Phys. Chem. Solids 68(5), 878–882 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    H. Yang, M. Li, W. He, Y. Jiang, K. G. Lim, and W. Song, et al., Novel selector for high density non-volatile memory with ultra-low holding voltage and 107 on/off ratio. Symposium on VLSI Technology Digest, 2015, pp. T130–T131Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Electronic Science and TechnologyNational University of Defense TechnologyChangshaChina
  2. 2.Key Laboratory of Microelectronics Device and Integrated Technology, Institute of MicroelectronicsChinese Academy of SciencesBeijingChina

Personalised recommendations