Applied Physics A

, 125:778 | Cite as

ZnFe2O4/CuO core–shell structured nanoparticles: synthesis, structural and magnetic properties

  • Rajendra Mohan
  • Mritunjoy Prasad Ghosh
  • Samrat MukherjeeEmail author


Synthesis of core/shell structured ZnFe2O4/CuO nanoparticles with varying core diameter and different weight percentage of CuO phase [(1−x) ZnFe2O4/x CuO: x = 0.15, 0.30, 0.45 and 0.60] using double stage standard chemical co-precipitation method has been reported in this article. For first four samples only the diameter of core was varied and for other four samples only the weight percentage of CuO phase was varied. The existence of both cubic spinel ZnFe2O4 phase along with monoclinic CuO phase was verified by X-ray patterns recorded at room temperature. The average core diameter was in between 8 and 13 nm as estimated using Scherrer’s formula and further verified by HRTEM images. A reduction in lattice parameter with increasing core thickness and also with increasing CuO phase was observed. A notable enhancement in coercivity and saturation magnetization were observed in field cooled (5 T) hysteresis loops obtained at 5 K for the first four varying core diameter core–shell structured nanoparticles in comparison to bare zinc ferrite nanoparticles of almost same size. A decreasing trend in coercivity and saturation magnetization was also noticed in low temperature hysteresis loops for higher CuO content samples. A considerable improvement in blocking temperature (TB) as well as Néel temperature (TN) for all the different core diameter samples were also found in M(T) protocols. Both blocking temperature and Néel temperature decreased for increasing CuO content in composite nanoparticles. The room temperature M(H) plots exhibited superparamagnetic nature with insignificant coercivity and negligible remanence.



  1. 1.
    T. Prakash, G.V.M. Williams, J. Kennedy, S. Rubanov, J. Alloys Compd. 667, 255–261 (2016)CrossRefGoogle Scholar
  2. 2.
    S. Khamlich, Z. Abdullaeva, J.V. Kennedy, M. Maaza, Appl. Surf. Sci. 405, 329–336 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    T. Prakash, G.V.M. Williams, J. Kennedy, S. Rubanov, J. Appl. Phys. 120, 123905 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    G.V.M. Williams, T. Prakash, J. Kennedy, S.V. Chong, S. Rubanov, J. Magn. Magn. Mater. 460, 229–233 (2018)ADSCrossRefGoogle Scholar
  5. 5.
    K. Chakrabarti, B. Sarkar, V.D. Ashok, K. Das, S.S. Chaudhuri, S.K. De, Nanotechnology 24, 505711 (2013)CrossRefGoogle Scholar
  6. 6.
    M.P. Ghosh, S. Mukherjee, J. Am. Ceram. Soc. 00, 1–12 (2019)Google Scholar
  7. 7.
    J. Nogues, I.K. Schuller, J. Magn. Magn. Mater. 192, 203–232 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    J.M.D. Coey, Magnetism and Magnetic Materials (Cambridge University Press, New York, 2010)CrossRefGoogle Scholar
  9. 9.
    M. Kiwi, J. Magn. Magn. Mater. 234, 584–595 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    A.E. Berkowitz, K. Takano, J. Magn. Magn. Mater. 200, 552–570 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    O. Iglesias, A. Labarta, X. Batlle, J. Nanosci. Nanotechnol. 8, 2761–2780 (2008)Google Scholar
  12. 12.
    S. Laureti, S.Y. Suck, H. Haas, E. Prestat, O. Bourgeois, D. Givord, Phys. Rev. Lett. 108, 077205 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    D.W. Kavich, J.H. Dickerson, S.V. Mahajan, S.A. Hasan, J.H. Park, Phys. Rev. B 78, 174414 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    R. Mohan, M.P. Ghosh, S. Mukherjee, Mater. Res. Express 5, 035029 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    R. Mohan, M.P. Ghosh, S. Mukherjee, J. Magn. Magn. Mater. 458, 193–199 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    R. Mohan, M.P. Ghosh, S. Mukherjee, Mater. Res. Express 6, 056105 (2019)ADSCrossRefGoogle Scholar
  17. 17.
    M.P. Ghosh, S. Mukherjee, J. Magn. Magn. Mater. 489, 165320 (2019)CrossRefGoogle Scholar
  18. 18.
    R. Mohan, M.P. Ghosh, R.K. Choubey, S. Mukherjee, J. Mater. Sci.: Mater. Electron. 30, 11748 (2019)Google Scholar
  19. 19.
    S. Kumar, V. Singh, S. Aggarwal, U.K. Mandal, R.R. Kotnala, Mater. Sci. Eng., B 116, 76–82 (2010)CrossRefGoogle Scholar
  20. 20.
    M. Zhang, Z.Q. Liu, P. Zhang, X. Tang, J. Yang, X. Zhu, Y. Sun, J. Dai, Adv. Mater. Sci. Eng. 609819, 10 (2013)Google Scholar
  21. 21.
    H. Yoon, J.S. Lee, J.H. Min, J.H. Wu, Y.K. Kim, Nanoscale Res. Lett. 8, 530 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    J.F. Xu, W. Ji, Z.X. Shen, S.H. Tang, X.R. Ye, D.Z. Jia, X.Q. Xin, J. Solid State Chem. 147, 516–519 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    M. Vaseem, A. Umar, Y.B. Hahn, D.H. Kim, S.K. Lee, J.S. Jang, J.S. Lee, Catal. Commun. 10, 11–16 (2008)CrossRefGoogle Scholar
  24. 24.
    R. Sathyamoorthy, K. Mageshwari, Physica E 47, 157–161 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    F.P. Koffyberg, F.A. Benko, J. Appl. Phys. 53, 1173–1177 (1982)ADSCrossRefGoogle Scholar
  26. 26.
    S. Hussain, A. Mumtaz, S.K. Hasanain, M. Usman, J. Appl. Phys. 111, 023908 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    S. Asbrink, A. Waskowska, J. Phys. 3, 8173 (1991)Google Scholar
  28. 28.
    C. Yao, Q. Zeng, G.F. Goya, T. Torres, J. Liu, H. Wu, M. Ge, Y. Zeng, Y. Wang, J.Z. Jiang, J. Phys. Chem. C 111, 12274–12278 (2007)CrossRefGoogle Scholar
  29. 29.
    D. Carta, M.F. Casula, A. Falqui, D. Loche, G. Mountjoy, C. Sangregorio, A. Corrias, J. Phys. Chem. C 113, 8606–8615 (2009)CrossRefGoogle Scholar
  30. 30.
    M. Hashim, S.E. Shirsath, S.S. Meena, R.K. Kotnala, S. Kumar, D. Ravinder, M. Raghasudha, P. Bhatt, E. Senturk, R.Kumar Alimuddin, J. Magn. Magn. Mater. 381, 416–421 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    G. Sarveena, A. Kumar, R.K. Kotnala, K.M. Batoo, M. Singh, Ceram. Int. 42, 4993–5000 (2016)CrossRefGoogle Scholar
  32. 32.
    V.B. Gutierrez, M.J.T. Fernandez, R.S. Puche, J. Phys. Chem. C 114, 1789–1795 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsNational Institute of Technology PatnaPatnaIndia

Personalised recommendations