Advertisement

Applied Physics A

, 125:776 | Cite as

Tuning the optical, electrical resistivity and structural properties of DC magnetron sputtered aluminum zinc oxide films by changing the oxygen flow rate

  • Mohammed S. Alqahtani
  • N. M. A. HadiaEmail author
  • S. H. MohamedEmail author
Article
  • 26 Downloads

Abstract

Thin films of aluminum zinc oxide (AZO) were fabricated by DC reactive magnetron sputtering from 50 wt% Al/Zn metallic target. The structure and optical constants of AZO films were controlled by changing the oxygen (O2) flow rate. X-Ray diffraction revealed that the addition of oxygen transforms the crystalline nature of the metallic Al/Zn to completely amorphous film at 4.5 sccm. The film density, surface roughness and deposition rate were evaluated from X-ray reflectometry measurements and they were found to decrease strongly upon transformation from metallic to oxidic sputtering mode. The optical constants were extracted from the ellipsometry measurements. As O2 flow increased from 4.5 to 30 sccm, the optical band gap increased from 4.74 to 5.33 eV whereas the refractive index decreased simultaneously. Low resistivity films were obtained as O2 flow increased from 0 to 4 sccm whereas insulating films were obtained for O2 flows above 4 sccm. The results indicated that by regulating the oxygen flow diverse ZAO films with diverse chemical stoichiometries and properties can be tuned.

Notes

Acknowledgements

This project was supported by King Saud University, Deanship of Scientific Research, College of Science Research Center.

References

  1. 1.
    M. Gupta, V. Singh, P. Katyal, Mater. Today Proc. 5, 27989–27997 (2018)CrossRefGoogle Scholar
  2. 2.
    C.H. Shin, S.Y. Cha, H.C. Lee, W.-J. Lee, B.-G. Yu, D.-H. Kwak, Integr. Ferroelectr. 34, 113 (2001)CrossRefGoogle Scholar
  3. 3.
    J. Gottmann, E. Kreutz, Surf. Coat. Technol. 116, 1189 (1999)CrossRefGoogle Scholar
  4. 4.
    X. Nie, E. Meletis, J. Jiang, A. Leyland, A. Yerokhin, A. Matthews, Surf. Coat. Technol. 149, 245 (2002)CrossRefGoogle Scholar
  5. 5.
    M. Serenyi, T. Lohner, G. Safran, J. Szívos, Vacuum 128, 213–218 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    S. Bhavsar, G.B. Patel, N.L. Singh, Phys. B 533, 12–16 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    F. Zhang, K. Saito, T. Tanaka, M. Nishio, M. Arita, Q. Guo, Appl. Phys. Lett. 105, 162107 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    W. Xu, J. Jiang, S. Xu, Y. Zhang, H. Xu, L. Han, X. Feng, J. Alloys Compd. 791, 773–778 (2019)CrossRefGoogle Scholar
  9. 9.
    G.V. Naik, A. Boltasseva, Phys. Status Solidi (RRL) 4, 295–297 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    J. Cai, D. Han, Y. Geng, L. Wang, S. Zhang, Y. Wang, IEEE T. Electron Dev. 60, 2432–2435 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    S. Lu, Z. Wang, H. Yan, R. Wang, K. Lu, Y. Cheng, W. Qin, X. Wu, J. Energy Chem. 41, 87–92 (2020)CrossRefGoogle Scholar
  12. 12.
    T.-Y. Yun, S.-R. Park, J.-Y. Baek, H.-J. Han, C.-W. Jeon, Mol. Cryst. Liq. Cryst. 586, 82–87 (2013)CrossRefGoogle Scholar
  13. 13.
    S. Ullah, M. Lucci, F. De Matteis, I. Davoli, Thin Solid Films 640, 109–115 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    D.B. Fullager, G.D. Boreman, C.D. Ellinger, T. Hofmann, Thin Solid Films 653, 267–273 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    A. Eshaghi, M. Hajkarimi, Optik 125, 5746–5749 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    E. Chason, T.M. Mayer, Crit. Rev. Solid State Mater. Sci. 22, 1 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    B. Lengeler, M.H. Hüppauff, Fresenius J. Anal. Chem. USSR 346, 155 (1993)CrossRefGoogle Scholar
  18. 18.
    S.K. O’Leary, S.R. Johnson, P.K. Lim, J. Appl. Phys. 82, 3334 (1997)ADSCrossRefGoogle Scholar
  19. 19.
    W. Theiss, in SCOUT Thin Film Analysis Software Handbook, Hard-and Software, ed. by M. Theiss (Dr. Bernhard-Klein Str. 110, D-52078, Aachen, Germany, 2000)Google Scholar
  20. 20.
    O. Kappertz, R. Drese, M. Wuttig, J. Vac. Sci. Technol., A 20, 2084 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    L.J. Meng, M.P. Dos Santos, Appl. Surf. Sci. 68, 319 (1993)ADSCrossRefGoogle Scholar
  22. 22.
    S.H. Mohamed, R. Drese, Thin Solid Films 513, 64–71 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    M. Chen, Z. Pei, C. Sun, L. Wen, X. Wang, J. Cryst. Growth 220, 254 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    W.H. Ha, M.H. Choo, S. Im, J. Non-Cryst, Solids 203, 78 (2002)Google Scholar
  25. 25.
    I. Sieber, N. Wanderka, I. Urban, I. Drfel, E. Schierhorn, F. Fenske, W. Fuhs, Thin Solid Films 230, 108 (1998)CrossRefGoogle Scholar
  26. 26.
    H.P.R. Frederikse, D.R. Lide (eds.), CRC Handbook of Chemistry and Physics, 78th edn (CRC Press, 1997–1998)Google Scholar
  27. 27.
    T.E. Hartman, J. Vac. Sci. Technol. 2, 239 (1965)ADSCrossRefGoogle Scholar
  28. 28.
    S.H. Mohamed, O. Kappertz, T.P.L. Pedersen, R. Drese, M. Wuttig, Phys. Stat. Sol. (a) 198, 224–237 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    P.-W. Chen, S.-Y. Huang, C.-C. Wang, S.-H. Yuan, D.-S. Wuu, J. Alloys Compd. 791, 1213–1219 (2019)CrossRefGoogle Scholar
  30. 30.
    S.-D. Mo, W.Y. Ching, Phys. Rev. B 57, 15219 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    O. Madelung, M. Schulz, H. Weiss (eds.), Numerical Data and Functional Relationships in Science and Technology, Vol. 17b of Landolt-Bornstein New Series (Springer, Berlin, 1982), p. 35Google Scholar
  32. 32.
    D. Mergel, D. Buschendorf, S. Eggert, R. Grammes, B. Samest, Thin Solid Films 371, 218 (2000)ADSCrossRefGoogle Scholar
  33. 33.
    J. Wang, R. Chen, L. Xiang, S. Komarneni, Ceram. Int. 44, 7357–7377 (2018)CrossRefGoogle Scholar
  34. 34.
    W. Zhang, J. Gan, L. Li, Z. Hu, L. Shi, N. Xu, J. Sun, J. Wu, Mater. Sci. Semicond. Process. 74, 147–153 (2018)CrossRefGoogle Scholar
  35. 35.
    L. Sun, J.T. Grant, J.G. Jones, N.R. Murphy, Opt. Mater. 84, 146–157 (2018)ADSCrossRefGoogle Scholar
  36. 36.
    J. Hu, R.G. Gordon, J. Appl. Phys. 71, 880 (1992)ADSCrossRefGoogle Scholar
  37. 37.
    J.W. Elam, D. Routkevitch, S.M. George, J. Electrochem. Soc. 150, G339–G347 (2003)CrossRefGoogle Scholar
  38. 38.
    M. Vanmathi, I. Mohamed, S.K. Marikkannanm, M. Venkatswarlu, J. Ovonic Res. 13, 345–349 (2017)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics and AstronomyKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Department of Physics, College of ScienceJouf UniversityJoufSaudi Arabia
  3. 3.Physics Department, Faculty of ScienceSohag UniversitySohagEgypt
  4. 4.Department of Physics, Faculty of ScienceIslamic University of MadinahMedinahSaudi Arabia

Personalised recommendations