Advertisement

Applied Physics A

, 125:773 | Cite as

Effect of B-site deficiency on the (In, Fe) co-doped SrTiO3

  • Runping Li
  • Cheng Zhang
  • Jianhua LiuEmail author
  • Junwen Zhou
  • Lei Xu
Article
  • 29 Downloads

Abstract

Indium and iron were co-doped at the Ti site of strontium titanate (SrTiO3) as dopant to improve the electrical properties of the anode material for solid oxide fuel cells. The effect of B-site deficiency on the weight loss, phase, lattice parameter, density, microstructure and electrical properties of Sr(Ti0.8In0.1Fe0.1)1−xO3−δ (x = 0, 0.02, 0.06) samples was investigated. A compound solid solution was formed at 977 °C. Sr(Ti0.8In0.1Fe0.1)1−xO3−δ powders sintered at 1435 °C for 5 h in air exhibited a single-phas cubic perovskite structure. With increasing B-site deficiency level, the relative density and sinterability of (In, Fe) co-doped SrTiO3 decrease, whereas its lattice parameter, porosity and total conductivity increase.

Notes

Acknowledgement

This work was supported by the funds for the construction of high-level talents of Kunming University of Science and Technology (KKKP201763019), Research on Microwave Method in Carbon Fiber Preparation (KKK0201863053), Yunnan Science and Technology Major Project (2018ZE008 and 2018ZE027) and the Kunming University of Science and Technology Analysis Test Fund (2017T20170001 and 2018M20172228010).

References

  1. 1.
    K. Shan, X.M. Guo, Synthesis and electrical properties of mixed-conducting YxSr1−xTi0.6Fe0.4O3−δ. Mater. Lett. 121, 251–253 (2014)CrossRefGoogle Scholar
  2. 2.
    X. Li, H. Zhao, F. Gao, Z. Zhu, N. Chen, W. Shen, Synthesis and electrical properties of Co-doped Y0.08Sr0.92TiO3−δ as a potential SOFC anode. Solid State Ionics 179, 1588–1592 (2008)CrossRefGoogle Scholar
  3. 3.
    L. Ying, Y. Xie, J. Gong, Y. Chen, Z. Zhang, Preparation of Ni/YSZ materials for SOFC anodes by buffer-solution method. Mater. Sci. Technol. 86, 119–122 (2001)Google Scholar
  4. 4.
    M.J. Sayagués, F.J. Gotor, M. Pueyo, R. Poyato, F.J. Garcia-Garcia, Mechanosynthesis of Sr1−xLaxTiO3, anodes for SOFCs: structure and electrical conductivity. J. Alloy. Compd. 763, 679–686 (2018)CrossRefGoogle Scholar
  5. 5.
    F. Gao, H. Zhao, X. Li, Y. Cheng, X. Zhou, F. Cui, Preparation and electrical properties of yttrium-doped strontium titanate with B-site deficiency. J. Power Sources 185, 26–31 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    K. Ke, A. Gunji, H. Mori, S. Tsuchida, H. Takahashi, K. Ukai, Y. Mizutani, H. Sumi, M. Yokoyama, K. Waki, Effect of oxide on carbon deposition behavior of CH4 fuel on Ni/ScSz cermet anode in high temperature SOFCs. Solid State Ionics Diffus. React. 177, 541–547 (2006)CrossRefGoogle Scholar
  7. 7.
    J.H. Lee, H. Moon, H.W. Lee, J. Kim, J.D. Kim, K.H. Yoon, Quantitative analysis of microstructure and its related electrical property of SOFC anode, Ni–YSZ cermet. Solid State Ionics Diffus. React. 148, 15–26 (2002)CrossRefGoogle Scholar
  8. 8.
    H.Y. Ji, G.W. Park, S. Lee, S.K. Woo, Microstructural effects on the electrical and mechanical properties of Ni–YSZ cermet for SOFC anode. J. Power Sources 163, 926–932 (2007)CrossRefGoogle Scholar
  9. 9.
    Z. Han, Z. Yang, M. Han, Optimization of Ni-YSZ anodes for tubular SOFC by a novel and efficient phase inversion-impregnation approach. J. Alloy. Compd. 750, 130–138 (2018)CrossRefGoogle Scholar
  10. 10.
    J.S. Yoon, Y.Y. Mi, K. Chan, J.P. Hee, M.L. Sang, H.L. Kyu, J.H. Hae, Y0.08Sr0.92FexTi1−xO3−δ perovskite for solid oxide fuel cell anodes. Mater. Sci. Eng. B 177, 151–156 (2012)CrossRefGoogle Scholar
  11. 11.
    K. Shan, X.M. Guo, Electrical properties of (Y0.08 Sr0.92)1−xTi0.6Fe0.4O3−δ mixed conductor. Electrochim. Acta 154, 31–34 (2015)CrossRefGoogle Scholar
  12. 12.
    K. Shan, Z.Z. Yi, Synthesis and ionic-electronic conductivity of A-site deficient (Y, In) co-doped SrTiO3 as novel materials for mixed conductor. Scripta Mater. 107, 119–122 (2015)CrossRefGoogle Scholar
  13. 13.
    S. Singh, P. Singh, M. Viviani, S. Presto, Dy doped SrTiO3: a promising anodic material in solid oxide fuel cells. Int. J. Hydrogen Energy 43, 19242–19249 (2018)CrossRefGoogle Scholar
  14. 14.
    X. Li, H. Zhao, F. Gao, N. Chen, N. Xu, La and Sc co-doped SrTiO3 as novel anode materials for solid oxide fuel cells. Electrochem. Commun. 10, 1567–1570 (2008)CrossRefGoogle Scholar
  15. 15.
    X. Li, H. Zhao, D. Luo, K. Huang, Electrical conductivity and stability of A-site deficient (La, Sc) co-doped SrTiO3 mixed ionic-electronic conductor. Mater. Lett. 65, 2624–2627 (2011)CrossRefGoogle Scholar
  16. 16.
    F. Yi, H. Li, H. Chen, R. Zhao, X. Jiang, Preparation and characterization of La and Cr co-doped SrTiO3 materials for SOFC anode. Ceram. Int. 39, 347–352 (2013)CrossRefGoogle Scholar
  17. 17.
    H. Zhao, F. Gao, X. Li, C. Zhang, Y. Zhao, Electrical properties of yttrium doped strontium titanate with A-site deficiency as potential anode materials for solid oxide fuel cells. Solid State Ionics 180, 193–197 (2009)CrossRefGoogle Scholar
  18. 18.
    D. Luo, W. Xiao, F. Lin, C. Luo, X. Li, Effects of A-site deficiency on the electrical conductivity and stability of (La, Co) co-doped SrTiO3 anode materials for intermediate temperature solid oxide fuel cells. Adv. Powder Technol. 27, 481–485 (2016)CrossRefGoogle Scholar
  19. 19.
    G. Ostendorp, H. Homborg, Darstellung und Eigenschaften der Diphthalocyaninate des Yttriums und Indiums. Zeitschrift für Anorganische Und Allgemeine Chemie 622, 1358–1364 (1996)CrossRefGoogle Scholar
  20. 20.
    V.V. Kharton, A.V. Kovalevsky, A.P. Viskup, J.R. Jurado, F.M. Figueiredo, E.N. Naumovich, J.R. Frade, Transport properties and thermal expansion of Sr0.97Ti1−xFexO3−δ (x = 0.2–0.8). J. Solid State Chem. 156, 437–444 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    M.A.F. de Souza, A.G. SouzaR, A. Candeia, D.M.A. Melo, L.E.B. Soledade, M.R.C. Santos, I.M.G. Santos, S.J.G. Lima, E. Longo, Synthesis and characterization of SrCoxTi1−xO3. J. Therm. Anal. Calorim. 794, 411–414 (2005)CrossRefGoogle Scholar
  22. 22.
    T. Hungría, M. Algueró, A. Castro, Synthesis of nanosized (1 − x)NaNbO3-xSrTiO3 solid solution by mechanochemical activation, processing of ceramics, and phase transitions. Chem. Mater. 18, 5370–5376 (2006)CrossRefGoogle Scholar
  23. 23.
    K. Shan, Z.Z. Yi, Electrical conduction behavior of mixed ionic-electronic n conductor Y0.08Sr0.92Ti1−xScxO3−δ. Scripta Mater. 114, 70–73 (2016)CrossRefGoogle Scholar
  24. 24.
    K. Shan, X.M. Guo, Synthesis and electrical properties of Fe-doped Y0.08Sr0.92TiO3 mixed ionic–electronic conductor. Mater. Lett. 105, 196–198 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Runping Li
    • 1
  • Cheng Zhang
    • 2
  • Jianhua Liu
    • 1
    • 2
    Email author
  • Junwen Zhou
    • 1
  • Lei Xu
    • 1
    • 2
  1. 1.Faculty of Metallurgical and Energy EngineeringKunming University of Science and TechnologyKunmingChina
  2. 2.State Key Laboratory of Complex Nonferrous Metal Resources Clean UtilizationKunming University of Science and TechnologyKunmingChina

Personalised recommendations