Applied Physics A

, 125:781 | Cite as

Neural network approach to quality monitoring of injection molding of photoluminescent polymers

  • F. TrovalusciEmail author
  • N. Ucciardello
  • G. Baiocco
  • F. Tagliaferri


Photoluminescent polypropylene was obtained by twin-screw extrusion, the engineered material was injection molded and the resulting flat components were characterized in terms of luminescence and mechanical properties. Different pigment concentrations and different thickness of molded samples were considered. Instrumented flat indentations were performed, stating good mechanical performance (more than 500 N indentation load at 0.3 mm penetration depth) of components, which showed at the same time a reliable photoluminescent emission over a reasonable time range (persistence time 30 min). The experimental trend of load-penetration curves was modelled by an artificial neural network. A good generalization capability and high flexibility were found for the proposed neural network solution.



  1. 1.
    S. Shionoya, W.M. Yen, Phosphor Handbook (CRC Press, Boca Raton, 1999)Google Scholar
  2. 2.
    G. Qiu, Y. Chen, J. Cui, X. Geng, H. Wang, B. Song, Synthesis of long afterglow phosphors doped B SrAl2O4:Eu2+, Dy3+ and its luminescent properties. J. Rare Earths 25, 86–89 (2007)CrossRefGoogle Scholar
  3. 3.
    F. Pellé, T. Aitasalo, M. Lastusaari, J. Niittykoski, J. Hӧlsӓ, Optically stimulated luminescence of persistent luminescence materials. J. Lumin. 119–120, 64–68 (2006)CrossRefGoogle Scholar
  4. 4.
    D. Jia, Charging curves and excitation spectrum of long persistent phosphor SrAl2O4:Eu2+, Dy3+. Opt. Mater. 22, 65–69 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    R. Tonikian, G. Proulox, N. Bénichou, I. Reid, Literature review on photoluminescent material used as a safety wayguidance system, PLM V6-2 (2006)Google Scholar
  6. 6.
    Lei Xie, Gerhard Ziegmann, Mechanical properties of the weld line defect in micro injection molding for various nano filled polypropylene composites. J. Alloys Compd 509, 226–233 (2011)CrossRefGoogle Scholar
  7. 7.
    M.H. Al-Saleh, U. Sundarara, Review of the mechanical properties of carbon nanofiber/polymer composites. Compos. A 42, 2126–2142 (2011)CrossRefGoogle Scholar
  8. 8.
    G. Qiu, Y. Sun, Y. Chen, M. Zhang, Studies on self luminous materials and coating with long persistent yellow-green afterglow. J. Rare Earths 21, 533–536 (2003)Google Scholar
  9. 9.
    S.S. Pathak, A. Sharma, A.S. Khanna, Value addition to waterborne polyurethane resin by silicone modification for developing high performance coating on aluminum alloy. Prog. Org. Coat. 65, 206–216 (2009)CrossRefGoogle Scholar
  10. 10.
    N. Alcón, A. Tolosa, M.T. Rodríguez, C. Moreno, Development of photoluminescent powder coatings by UV curing process. Prog. Org. Coat. 68, 88–90 (2010)CrossRefGoogle Scholar
  11. 11.
    C. Wang, B. Yan, Rare earth (Eu3+, Tb3+) centered composite gels Si–O–M (M = B, Ti) through hexafluoroacetyl-acetone building block: Sol–gel preparation, characterization and photoluminescence. Mater. Res. Bull. 46, 2515–2522 (2011)CrossRefGoogle Scholar
  12. 12.
    X.-L. Wang, B. Yan, Photofunctional binary and ternary Eu 3+/Tb 3+ hybrid materials with copolymer linkage methacrylic acid-vinyltrimethoxysilane and 1,10-phenanthroline. Colloids Surf. A 399, 18–24 (2012)CrossRefGoogle Scholar
  13. 13.
    M. Barletta, S. Pezzola, V. Tagliaferri, F. Trovalusci, S. Vesco, Wear response and mechanical behaviour of silicone-based photoluminescent coatings. Colloids Surf. A 429, 1–11 (2013)CrossRefGoogle Scholar
  14. 14.
    G.B. Hattotuwa, H. Premalal, Baharin A. Ismail, Comparison of the mechanical properties of rice husk powder filled polypropylene composites with talc filled polypropylene composites. Polym. Test 21, 833 (2002)CrossRefGoogle Scholar
  15. 15.
    B. Suresh, B.N. Ravi Kumar, M. Venkataramareddy, T. Jayaraju, Role of micro/nano fillers on mechanical and tribological properties of polyamide66/polypropylene composites. Mater. Des. 31, 1993–2000 (2010)CrossRefGoogle Scholar
  16. 16.
    M. Barletta, M. Puopolo, F. Trovalusci, S. Vesco, High-density polyethylene/SrAl2O4:Eu2+, Dy3+ photoluminescent pigments: material design. Melt Process. Charact. Polym. Plast. Technol. Eng. 56(4), 400–410 (2017)CrossRefGoogle Scholar
  17. 17.
    F. Trovalusci, A. Donno, V. Tagliaferri, Statistical analysis of the mechanical properties of injection molded photoluminescent polymers, in: International conference on numerical analysis and applied mathematics 2014, ICNAAM 2014, AIP Conference Proceedings, vol 1648 (2015) Article number 570009Google Scholar
  18. 18.
    S. Genna, F. Trovalusci, V. Tagliaferri, Indentation test to study the moisture absorption effect on CFRP composite. Compos. B Eng. 124, 1–8 (2017)CrossRefGoogle Scholar
  19. 19.
    Mriganka Chakraborty, Artificial neural network for performance modeling and optimization of CMOS analog circuits. Int. J. Comput. Appl. 58(18), 6–12 (2012)Google Scholar
  20. 20.
    A. Simoncini, V. Tagliaferri, F. Trovalusci, N. Ucciardello, Neural networks approach for IR-heating and deformation of ABS in thermoforming. Int. J. Comput. Appl. Technol. 56(2), 114–120 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • F. Trovalusci
    • 1
    Email author
  • N. Ucciardello
    • 1
  • G. Baiocco
    • 2
  • F. Tagliaferri
    • 3
  1. 1.Dipartimento di Ingegneria dell’ImpresaUniversità degli Studi di Roma Tor VergataRomeItaly
  2. 2.Dipartimento di Ingegneria Industriale e dell’Informazione e di EconomiaUniversity of L’AquilaL’AquilaItaly
  3. 3.Niccolò Cusano UniversityRomeItaly

Personalised recommendations