Advertisement

Applied Physics A

, 125:787 | Cite as

Design and performance analysis of GAA Schottky barrier-gate stack-dopingless nanowire FET for phosphine gas detection

  • Ashish RamanEmail author
  • Deepti Kakkar
  • Manish Bansal
  • Naveen Kumar
Article
  • 27 Downloads

Abstract

This paper proposed a Gate-All-Around (GAA) Schottky Barrier (SB)-Gate Stack (GS)-based Dopingless Cylindrical Nanowire Field-Effect Transistor (SB-GS-DNWFET) for the application of phosphine (PH3) gas detection. The Schottky barrier nanowire FET is used over a conventional nanowire FET at nanometer scale due to its inherent advantages such as low parasitic resistance and higher ON-state current. In this sensor, the changes in the work function of the metal gate electrode have been used for the detection amount of gas. Three different catalytic metals such as platinum, rhodium, and iridium are preferred as gate electrodes for PH3 gas detection because of their reactivity and sensitivity towards that gas. The sensitivity can be measured in terms of change in ON-state current (ION), subthreshold leakage current (IOFF), ON-state current-to-OFF-state current ratio (ION/IOFF), and threshold voltage (Vth) for sensing the gas molecules. The work function of these catalytic metals at gate electrode is varied as 50, 100, 150, and 200 meV to investigate the change in sensitivity parameters. In this work, the sensitivity of the Schottky barrier GAA-NWFET gas sensor with different catalytic metals (Pt, Rh, Ir) is compared and the impact of process parameters such as channel length and gate stacked (GS = SiO2 + high-k dielectric) on the sensitivity parameters is also studied.

Notes

References

  1. 1.
    P. Feng, F. Shao, Y. Shi, Q. Wan, Gas sensors based on semiconducting nanowire field-effect transistors. Open Access Sens. 14, 17406–17429 (2014)Google Scholar
  2. 2.
    C. Xu, J. Tamaki, N. Miura, N. Yamazoe, Grain-size effects on gas sensitivity of porous SnO2-based elements. Sens. Actuators B Chem. 3, 147–155 (1991)CrossRefGoogle Scholar
  3. 3.
    L.E. Kreno, K. Leong, O.K. Farha, M. Van Allendorf, R.P. Duyne, J.T. Hupp, Metal–organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012)CrossRefGoogle Scholar
  4. 4.
    N. Valmas, P.R. Ebert, Comparative toxicity of fumigants and a phosphine synergist using a novel containment chamber for the safe generation of concentrated phosphine gas. PLoS one 1(1), e130 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    F.L. Gazoni, C.G. Wilsmann, F. Flore, F. Silveira, R.A. Bampi, R. Boufleur, M. Lovato, Efficacy of phosphine gas against the darkling beetle (Alphitobius diaperinus). Acta Scientiae Veterinariae 39(2), 1–6 (2011)Google Scholar
  6. 6.
    B. Jena, K.P. Pradhan, P.K. Sahu, Investigation on cylindrical gate all around (GAA) to nanowire MOSFET for circuit application. Electron. Energ. 28, 637–643 (2015)Google Scholar
  7. 7.
    Pratap Y, Kumar M, Gupta M. Sensitivity investigation of gate-all-around junctionless transistor for hydrogen gas detection. In: 2016 IEEE International Nanoelectronics Conference (INEC). IEEE, pp. 1–2 (2016)Google Scholar
  8. 8.
    R. Gautam, M. Saxena, R.S. Gupta, M. Gupta, Gate-all-around nanowire MOSFET with catalytic metal gate for gas sensing applications. IEEE Trans. Nanotechnol. 12(6), 939–943 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    N.K. Singh, A. Raman, S. Singh, N. Kumar, A novel high mobility In1−xGaxAs cylindrical-gate-nanowire FET for gas sensing application with enhanced sensitivity. Superlattices Microstruct. 111, 518–528 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    M. Kumar, S. Haldar, M. Gupta, R.S. Gupta, Impact of gate material engineering (GME) on analog/RF performance of nanowire Schottky-Barrier gate all around (GAA) MOSFET for low power wireless applications: 3D T-CAD simulation. Microelectron. J. 45(11), 1508–1514 (2014)CrossRefGoogle Scholar
  11. 11.
    S. Ozdemir, J.L. Gole, The potential of porous silicon gas sensors. Curr. Opin. Solid State Mater. Sci. 11(5–6), 92–100 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    S. Ozdemir, J.L. Gole, Porous silicon gas sensors for room temperature detection of ammonia and phosphine. ECS Trans. 16(11), 379–385 (2008)CrossRefGoogle Scholar
  13. 13.
    A.E. Varfolomeev, A.I. Volkov, A.V. Eryshkin, V.V. Malyshev, A.S. Rasumov, S.S. Yakimov, Detection of phosphine and arsine in air by sensors based on SnO2 and ZnO. Sens. Actuators B: Chem. 7(1–3), 727–729 (1992)CrossRefGoogle Scholar
  14. 14.
    M.H. Weston, W. Morris, P.W. Siu, W.J. Hoover, D. Cho, R.K. Richardson, O.K. Farha, Phosphine gas adsorption in a series of metal–organic frameworks. Inorg. Chem. 54(17), 8162–8164 (2015)CrossRefGoogle Scholar
  15. 15.
    Y.S. Chung, K. Evans, W. Glaunsinger, Work function response of thin gold film surfaces to phosphine and arsine. Appl. Surf. Sci. 125(1), 65–72 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    G.E. Mitchell, M.A. Henderson, J.M. White, The adsorption of PH3 on Pt(LLL) and its influence on coadsorbed CO. Surf. Sci. 191(3), 425–448 (1987)ADSCrossRefGoogle Scholar
  17. 17.
    A.L. Garner, K. Koide, Fluorescent method for platinum detection in buffers and serums for cancer medicine and occupational hazards. Chem. Commun. 1, 83–85 (2009)CrossRefGoogle Scholar
  18. 18.
    G. Lu, J.E. Crowell, Evidence for a precursor to decomposition for phosphine adsorption on rhodium/alumina. J. Phys. Chem. 94(15), 5644–5646 (1990)CrossRefGoogle Scholar
  19. 19.
    Y. Cai, Z.H. Li, Y.Q. Yang, Y.Z. Yuan, Direct Immobilization of phosphine-rhodium complex on MCM-41 for propene hydroformylation. Chem. Res. Chin. Univ. 18(3), 311–315 (2002)Google Scholar
  20. 20.
    P. Braunstein, Y. Chauvin, J. Nähring, A. DeCian, J. Fischer, A. Tiripicchio, F. Ugozzoli, Rhodium (I) and iridium (I) complexes with β-Keto phosphine or phosphino enolate ligands. Catalytic transfer dehydrogenation of cyclooctane. Organometallics 15(26), 5551–5567 (1996)CrossRefGoogle Scholar
  21. 21.
    I. Cano, L.M. Martínez-Prieto, P.F. Fazzini, Y. Coppel, B. Chaudret, P.W. Van Leeuwen, Characterization of secondary phosphine oxide ligands on the surface of iridium nanoparticles. Phys. Chem. Chem. Phys. 19(32), 21655–21662 (2017)CrossRefGoogle Scholar
  22. 22.
    L.M. Lechuga, A. Calle, D. Golmayo, F. Briones, Different catalytic metals (Pt, Pd and Ir) for GaAs Schottky Barrier sensors. Sens. Actuators 7, 614–618 (1992)CrossRefGoogle Scholar
  23. 23.
    AU Manual, ATLAS Device Simulation Software (Silvaco International, Santa Clara, 2014)Google Scholar
  24. 24.
    M. Jang, J. Lee, Analysis of Schottky Barrier height in small contacts using a thermionic-field emission model. ETRI J. 24(6), 455–461 (2002)CrossRefGoogle Scholar
  25. 25.
    M.S. Tyagi, Physics of Schottky Barrier Junctions. www.books.google.com (2013)
  26. 26.
    G. Kumar, A. Raman, Pressure sensor based on MEMS nano-cantilever beam structure as a heterodielectric gate electrode of dopinglessá TFET. Superlattices Microstruct. 100, 535–547 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    K.P. Pradhan, M.R. Kumar, S.K. Mohapatra, P.K. Sahu, Analytical modeling of the threshold voltage for Cylindrical Gate All Around (CGAA) MOSFET using center potential. Ain Shams Eng. J. 6, 1171–1177 (2015)CrossRefGoogle Scholar
  28. 28.
    M. Kumar, S. Haldar, M. Gupta, R.S. Gupta, Analytical model of threshold voltage degradation due to localized charges in gate material engineered Schottky Barrier cylindrical GAA MOSFETs. In: IOP Publication, vol. 31 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    S.I. Amin, R.K. Sarin, Enhanced analog performance of doping-less dual material and gate stacked architecture of junctionless transistor with high-k spacer. Appl. Phys. A 122(4), 380 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    A. Sharma, A. Jain, Y. Pratap, R.S. Gupta, Effect of high-k and vacuum dielectrics as gate stack on a junctionless cylindrical surrounding gate (JL-CSG) MOSFET. Solid State Electron. 123, 26–32 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    S. Singh, A. Raman, A Dopingless Gate-All-Around (GAA) Gate-Stacked Nanowire FET with Reduced Parametric Fluctuation Effects (Springer, Berlin, 2018)CrossRefGoogle Scholar
  32. 32.
    S. Singh, A. Raman, Gate-all-around charge plasma-based dual material gate-stack nanowire FET for enhanced analog performance. IEEE Trans. Electron Dev. 65(7), 3026–3032 (2018)ADSCrossRefGoogle Scholar
  33. 33.
    K. Boucart, A.M. Ionescu, Double-gate tunnel FET with high-k gate dielectric. IEEE Trans. Electron Dev. 54(7), 1725–1733 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    S. Sahay, M.J. Kumar, Diameter dependence of leakage current in nanowire junctionless field effect transistors. IEEE Trans. Electron Dev. 64(3), 1330–1335 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ashish Raman
    • 1
    Email author
  • Deepti Kakkar
    • 1
  • Manish Bansal
    • 1
  • Naveen Kumar
    • 1
  1. 1.Dr BR Ambedkar National Institute of TechnologyJalandharIndia

Personalised recommendations