Advertisement

Applied Physics A

, 125:758 | Cite as

Effects of neutron–gamma radiation on the free radical contents in epoxy resin: upconversion luminescence and structural stabilization

  • I. Kacem
  • M. Daoudi
  • W. Dridi
  • H. Sellemi
  • K. Harzli
  • G. De Izzara
  • B. Geslot
  • H. Guermazi
  • P. Blaise
  • F. Hosni
  • Ahmed F. Al-HossainyEmail author
  • A. Bourezgui
  • R. Chtourou
Article
  • 6 Downloads

Abstract

The purpose of this work is to study the effect of mixed neutron–gamma radiation (MNGR) on structural, optical and paramagnetic properties on epoxy resin nanostructure thin films [ER]NSTF. These films were prepared and irradiated in the nuclear reactor with dose range between 100 and 900 Gy. After exposure to MNGR, FT-IR results demonstrated the broad ν(OH) and ν(C=O) band to increase with increase in radiation dose, while the ν(C–H) band decreased with increase in radiation dose. This is due to the formation of chain stretch, bending and scission/cross-linking through MNGR that lead to a decrease in the crystallinity region contained within the [ER]NSTF. XRD data confirm these results and show that the crystalline phase was destroyed by MNGR irradiation. PL is used to determine the fundamental transition and defects transitions in [ER]NSTF at 300 K. It was found that MNGR leads to significant enhancement of the luminescence properties. Samples of [ER]NSTF irradiated with 600 Gy dose presented the highest response. Therefore, EPR results confirmed that MNGR induces the paramagnetic center’s formation of the [ER]NSTF whose concentration varies differently.

Abbreviations

MNGR

Mixed neutron–gamma radiation

[ER]NSTF

Epoxy resin nanostructure thin films

FT-IR

Fourier transform infrared

XRD

X-ray powder diffraction

PL

Photoluminescence measurements

EPR

Electron paramagnetic resonance

ER

Epoxy resins

MINERVE Reactor

Minerve experimental reactor

CEA

Atomic Energy Commission

S1

Non-irradiated epoxy resins

S2

Irradiated epoxy resins with 100 Gy

S3

Irradiated epoxy resins with 500 Gy

S4

Irradiated epoxy resins with 600 Gy

S5

Irradiated epoxy resins with 900 Gy

hkl

Miller indices

\(\theta\)

Bragg angle

FWHM

Full width at half maximum

d

d-spacing

L

Crystallite size

λ

X-ray wavelength

a.u.

Arbitrary unit

LUMO

Lowest unoccupied molecular orbital

HOMO

Highest occupied molecular orbital

D

Band of defects

Eg

Energy gap

BM

Burstein–Moss effect

g

Landé factor

ICERR

International Centres based on Research Reactors

IAEA

International Atomic Energy Agency

Notes

Funding

This paper was developed under the framework of the International Centres based on Research Reactors (ICERR). This research was partially supported by the International Atomic Energy Agency (IAEA) and Atomic Energy and Atomic Energy Commission (CEA) in France (Grant no. 123252).

References

  1. 1.
    S. Mishra, P. Katti, S. Kumar, S. Bose, Macroporous epoxy-carbon fiber structures with a sacrificial 3D printed polymeric mesh suppresses electromagnetic radiation. Chem. Eng. J. 357, 384–394 (2019)CrossRefGoogle Scholar
  2. 2.
    N. Yousefi, X. Sun, X. Lin, X. Shen, J. Jia, B. Zhang, B. Tang, M. Chan, J.K. Kim, Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26, 5480–5487 (2014)CrossRefGoogle Scholar
  3. 3.
    J.G. de Almeida Machado, J.P.R.G. de Carvalho, A.C.C. Neves, F.P.D. Lopes, S.N. Monteiro, C.M.F. Vieira, Charpy impact test of polymer composites with epoxy resin reinforced jute fabric, Green Materials Engineering (Springer, Berlin, 2019), pp. 203–207CrossRefGoogle Scholar
  4. 4.
    T. Tsujimoto, H. Uyama, S. Kobayashi, Synthesis and curing behaviors of cross-linkable polynaphthols from renewable resources: preparation of artificial urushi. Macromolecules 37, 1777–1782 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    D.P. Ferreira, J. Cruz, R. Fangueiro, Surface modification of natural fibers in polymer composites, Green Composites for Automotive Applications (Elsevier, Amsterdam, 2019), pp. 3–41CrossRefGoogle Scholar
  6. 6.
    E. Robles, Field diagnostic testing of power generators and transformers using modern techniques, in Proceedings of the HV Testing Monitoring and Diagnostic Workshop, Alexandria, Virginia, paper, CiteSeerX, 2000Google Scholar
  7. 7.
    N. Bangsgaard, J.P. Thyssen, T. Menné, K.E. Andersen, C.G. Mortz, E. Paulsen, M. Sommerlund, N.K. Veien, G. Laurberg, K. Kaaber, Contact allergy to epoxy resin: risk occupations and consequences. Contact Dermat 67, 73–77 (2012)CrossRefGoogle Scholar
  8. 8.
    A.Y. Romanchuk, A.S. Slesarev, S.N. Kalmykov, D.V. Kosynkin, J.M. Tour, Graphene oxide for effective radionuclide removal. Phys. Chem. Chem. Phys. 15, 2321–2327 (2013)CrossRefGoogle Scholar
  9. 9.
    J.-R. Lee, S.-J. Park, M.-K. Seo, Y.-K. Baik, S.-K. Lee, A study on physicochemical properties of epoxy coating system for nuclear power plants. Nucl. Eng. Des. 236(9), 931–937 (2006)CrossRefGoogle Scholar
  10. 10.
    R. Prokopec, K. Humer, R.K. Maix, H. Fillunger, H.W. Weber, Influence of various catalysts on the radiation resistance and the mechanical properties of cyanate ester/epoxy insulation systems. Fusion Eng. Des. 84, 1544–1547 (2009)CrossRefGoogle Scholar
  11. 11.
    Z. Hu, Y. Liu, X. Xu, W. Yuan, L. Yang, Q. Shao, Z. Guo, T. Ding, Y. Huang, Efficient intrinsic self-healing epoxy acrylate formed from host-guest chemistry. Polymer 164, 79–85 (2019)CrossRefGoogle Scholar
  12. 12.
    Z. Xu, Y. Huang, C. Zhang, L. Liu, Y. Zhang, L. Wang, Effect of γ-ray irradiation grafting on the carbon fibers and interfacial adhesion of epoxy composites. Compos. Sci. Technol. 67, 3261–3270 (2007)CrossRefGoogle Scholar
  13. 13.
    Z. Wu, J. Li, C. Huang, R. Huang, L. Li, Effect of gamma irradiation on the mechanical behavior, thermal properties and structure of epoxy/glass-fiber composite. J. Nucl. Mater. 441, 67–72 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    H. Kaouach, F. Hosni, M. Daoudi, A. Bardaoui, K. Farah, H. Hamzaoui, R. Chtourou, Effects of gamma irradiation on photoluminescence and activation energy of epoxy resin. Superlattices Microstruct. 55, 191–197 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    F. Djouani, Y. Zahra, B. Fayolle, M. Kuntz, J. Verdu, Degradation of epoxy coatings under gamma irradiation. Radiat. Phys. Chem. 82, 54–62 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    F. Diao, Y. Zhang, Y. Liu, J. Fang, W. Luan, γ-Ray irradiation stability and damage mechanism of glycidyl amine epoxy resin. Nucl. Instrum. Methods Phys. Res. Sect. B 383, 227–233 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    F. Hosni, K. Farah, H. Kaouach, A. Louati, R. Chtourou, A. Hamzaoui, Effect of gamma-irradiation on the colorimetric properties of epoxy-resin films: potential use in dosimetric application. Nucl. Instrum. Methods Phys. Res. Sect. B 311, 1–4 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    M. Daoudi, W. Dridi, H. Sellemi, I. Kacem, K. Harzli, G. De Izzara, B. Geslot, H. Guermazi, R. Chtourou, P. Blaise, Photoluminescence enhancement from the defects state formed by neutron/gamma mixed irradiation in an epoxy resin for LED applications, in Radiation Effects and Defects in Solids, 2019, pp. 1–13Google Scholar
  19. 19.
    D. Blanchet, N. Huot, P. Sireta, H. Serviere, M. Boyard, M. Antony, V. Laval, P. Henrard, Qualification of a gamma-ray heating calculation scheme for the future Jules Horowitz material testing reactor (RJH). Ann. Nucl. Energy 35, 731–745 (2008)CrossRefGoogle Scholar
  20. 20.
    P. Blaise, H. Serviere, A. Roche, P. Fougeras, D. Blanchet, N. Huot, Recent advances in gamma heating measurements in full MOX cores using TLD technique: the ADAPh programme, in Proceedings of Global, TsuNuba, Japan, 2005Google Scholar
  21. 21.
    M. Le Guillou, A. Billebaud, A. Gruel, G. Kessedjian, O. Méplan, C. Destouches, P. Blaise, The CANDELLE experiment for characterization of neutron sensitivity of LiF TLDs. IEEE Trans. Nucl. Sci. 65, 2426–2433 (2018)ADSCrossRefGoogle Scholar
  22. 22.
    M. Antony, J. Di-Salvo, A. Pepino, J. Bosq, D. Bernard, P. Leconte, J. Hudelot, A. Lyoussi, Oscillation experiments techniques in CEA MINERVE experimental reactor, in 2009 1st International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications, IEEE, 2009, pp. 1–6Google Scholar
  23. 23.
    V. Lamirand, B. Geslot, J. Wagemans, L. Borms, E. Malambu, P. Casoli, X. Jacquet, G. Rousseau, G. Grégoire, P. Sauvecane, Miniature fission chambers calibration in pulse mode: interlaboratory comparison at the SCK·CEN BR1 and CEA CALIBAN reactors. IEEE Trans. Nucl. Sci. 61, 2306–2311 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    A.F. Al-Hossainy, M.R. Eid, M.S. Zoromba, Structural, DFT, optical dispersion characteristics of novel [DPPA-Zn-MR (Cl)(H2O)] nanostructured thin films. Mater. Chem. Phys. 232, 180–192 (2019)CrossRefGoogle Scholar
  25. 25.
    K. Kim, M.S. Park, Y. Na, J. Choi, S.A. Jenekhe, F.S. Kim, Preparation and application of polystyrene-grafted alumina core-shell nanoparticles for dielectric surface passivation in solution-processed polymer thin film transistors. Org. Electron. 65, 305–310 (2019)CrossRefGoogle Scholar
  26. 26.
    A. Al-Hossainy, M.S. Zoromba, O. El-Gammal, F.I. El-Dossoki, Density functional theory for investigation of optical and spectroscopic properties of zinc-quinonoid complexes as semiconductor materials. Struct Chemi 30, 1365-1380 (2019)  CrossRefGoogle Scholar
  27. 27.
    A. Bourezgui, I. Kacem, I.B. Assaker, M. Gannouni, J.B. Naceur, M. Karyaoui, R. Chtourou, Synthesis of porous TiO 2 thin films prepared with templating technique to improve the photoelectrochemical properties. J. Porous Mater. 23, 1085–1094 (2016)CrossRefGoogle Scholar
  28. 28.
    A. Bourezgui, I. Kacem, M. Karyaoui, R. Chtourou, Optical and photocatalytic properties of porous TiO2 thin films. Optoelectron. Adv. Mater. Rapid Commun. 10, 732–736 (2016)Google Scholar
  29. 29.
    A.B. Slimane, A.F. Al-Hossainy, M.S. Zoromba, Synthesis and optoelectronic properties of conductive nanostructured poly (aniline-co-o-aminophenol) thin film. J. Mater. Sci. Mater. Electron. 29, 8431–8445 (2018)CrossRefGoogle Scholar
  30. 30.
    B. Perret, B. Schartel, K. Stöß, M. Ciesielski, J. Diederichs, M. Döring, J. Krämer, V. Altstädt, Novel DOPO-based flame retardants in high-performance carbon fibre epoxy composites for aviation. Eur. Polym. J. 47, 1081–1089 (2011)CrossRefGoogle Scholar
  31. 31.
    A.F. Al-Hossainy, A. Ibrahim, Synthesis, structural and optical properties of novel 3-(3,5-dimethyl-1H-pyrazol-1-yl)-1-(diphenylphosphino)-2-((diphenylphosphino) methyl)-3-methylbutanone-1,2-diphenylethane-1, 2-diamine tungsten dicarbonyl (PyrPMB-W) nanostructure thin film. Opt. Mater. 46, 131–140 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    F.A. Mir, S. u Rehman, S.H. Khan, Gamma radiation response of plant isolated coumarin glycoside. Optik 127, 8361–8366 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    A.F. Al-Hossainy, Synthesis, spectral, thermal, optical dispersion and dielectric properties of nanocrystalline dimer complex (PEPyr–diCd) thin films as novel organic semiconductor. Bull. Mater. Sci. 39, 209–222 (2016)CrossRefGoogle Scholar
  34. 34.
    G. Yang, B.J. Rohde, H. Tesefay, M.L. Robertson, Biorenewable epoxy resins derived from plant-based phenolic acids. ACS Sustain. Chem. Eng. 4, 6524–6533 (2016)CrossRefGoogle Scholar
  35. 35.
    A.F. Al-Hossainy, A. Ibrahim, The effects of annealing temperature on the structural properties and optical constants of a novel DPEA-MR-Zn organic crystalline semiconductor nanostructure thin films. Opt. Mater. 73, 138–153 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    A.A. Attia, W.E. Rashwan, S.A. Khedr, Capacity of activated carbon in the removal of acid dyes subsequent to its thermal treatment. Dyes Pigm. 69, 128–136 (2006)CrossRefGoogle Scholar
  37. 37.
    A.F. Al-Hossainy, M.S. Zoromba, New organic semiconductor thin film derived from p-toluidine monomer. J. Mol. Struct. 1156, 83–90 (2018)ADSCrossRefGoogle Scholar
  38. 38.
    E. Yousif, R. Haddad, Photodegradation and photostabilization of polymers, especially polystyrene. SpringerPlus 2, 398 (2013)CrossRefGoogle Scholar
  39. 39.
    F.C. Hawthorne, L. Ungaretti, R. Oberti, P. Bottazzi, G.K. Czamanske, Li: an important component in igneous alkali amphiboles. Am. Miner. 78, 733–745 (1993)Google Scholar
  40. 40.
    M. Cameron, S. Sueno, J. Papike, C. Prewitt, High temperature crystal chemistry of K and Na fluor-richterites. Am. Miner. 68, 924–943 (1983)Google Scholar
  41. 41.
    M. Ross, H.T. Evans Jr., Studies of the torbernite minerals (i): the crystal structure of abernathyite and the structurally related compounds NH4(UO2AsO4)·3H2O and K(H3O)(UO2AsO4)2·6H2O. Am. Mineral. J. Earth Planet. Mater. 49, 1578–1602 (1964)Google Scholar
  42. 42.
    I.E. Grey, E.H. Nickel, Tivanite, a new oxyhydroxide mineral from Western Australia, and its structural relationship to rutile and diaspore. Am. Miner. 66, 866–871 (1981)Google Scholar
  43. 43.
    I.E. Grey, E.H. Nickel, Tivanite, a new oxyhydroxide mineral from Western Australia, and its structural relationship to rutile and diaspore. Am. Miner. 66(7–8), 866–871 (1981)Google Scholar
  44. 44.
    A. Al-Hossainy, M.S. Zoromba, Doped-poly(para-nitroaniline-co-aniline): synthesis, semiconductor characteristics, density, functional theory and photoelectric properties. J. Alloy. Compd. 789, 670–683 (2019)CrossRefGoogle Scholar
  45. 45.
    A.F. Al-Hossainy, H.K. Thabet, M.S. Zoromba, A. Ibrahim, Facile synthesis and fabrication of a poly(ortho-anthranilic acid) emeraldine salt thin film for solar cell applications. New J. Chem. 42, 10386–10395 (2018)CrossRefGoogle Scholar
  46. 46.
    A.M. Asiri, M.A. Hussein, B.M. Abu-Zied, A.E.A. Hermas, Enhanced coating properties of Ni-La-ferrites/epoxy resin nanocomposites. Polym. Compos. 36, 1875–1883 (2015)CrossRefGoogle Scholar
  47. 47.
    O.A. El-Gammal, A.F. Al-Hossainy, S.A. El-Brashy, Spectroscopic, DFT, optical band gap, powder X-ray diffraction and bleomycin-dependant DNA studies of Co(II), Ni(II) and Cu(II) complexes derived from macrocyclic Schiff base. J. Mol. Struct. 1165, 177–195 (2018)ADSCrossRefGoogle Scholar
  48. 48.
    A. Ibrahim, M. Abdel-Aziz, M.S. Zoromba, A.F. Al-Hossainy, Structural, optical, and electrical properties of multi-walled carbon nanotubes/polyaniline/Fe3O4 ternary nanocomposites thin film. Synth. Met. 238, 1–13 (2018)CrossRefGoogle Scholar
  49. 49.
    S. Ram, T. Mandal, Photoluminescence in small isotactic, atactic and syndiotactic PVA polymer molecules in water. Chem. Phys. 303, 121–128 (2004)CrossRefGoogle Scholar
  50. 50.
    M.D. Weir, C. Bastide, C.S.P. Sung, Characterization of interaction of water in epoxy by UV reflection spectroscopy. Macromolecules 34, 4923–4926 (2001)ADSCrossRefGoogle Scholar
  51. 51.
    G. Liao, S. Chen, X. Quan, H. Yu, H. Zhao, Graphene oxide modified gC 3N 4 hybrid with enhanced photocatalytic capability under visible light irradiation. J. Mater. Chem. 22, 2721–2726 (2012)CrossRefGoogle Scholar
  52. 52.
    S. Guo, L. Yang, B. Dai, F. Geng, Z. Yang, P. Lei, P. Wang, G. Gao, J. Han, V. Ralchenko, Effect of annealing treatment on transparent and conductive hydrated magnesium-carbon films. J. Alloy. Compd. 778, 83–89 (2019)CrossRefGoogle Scholar
  53. 53.
    J. Jadczak, L. Bryja, J. Kutrowska-Girzycka, P. Kapuściński, M. Bieniek, Y.-S. Huang, P. Hawrylak, Room temperature multi-phonon upconversion photoluminescence in monolayer semiconductor WS2. Nat. Commun. 10, 107 (2019)ADSCrossRefGoogle Scholar
  54. 54.
    J.Z. Xu, O.K. Muratoglu, E. Oral, Improved oxidation and wear resistance of ultrahigh molecular weight polyethylene using cross-linked powder reinforcement. J. Biomed. Mater. Res. B Appl. Biomater. 107, 716–723 (2019)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • I. Kacem
    • 1
    • 2
    • 3
  • M. Daoudi
    • 4
  • W. Dridi
    • 4
  • H. Sellemi
    • 4
  • K. Harzli
    • 4
  • G. De Izzara
    • 5
  • B. Geslot
    • 5
  • H. Guermazi
    • 6
  • P. Blaise
    • 5
  • F. Hosni
    • 4
    • 7
  • Ahmed F. Al-Hossainy
    • 3
    • 8
    Email author
  • A. Bourezgui
    • 1
    • 2
    • 3
  • R. Chtourou
    • 2
  1. 1.Faculty of Mathematical, Physical and Natural Sciences of TunisUniversity of Tunis El ManarTunisTunisia
  2. 2.Nanomaterials and Systems for Renewable Energy LaboratoryResearch and Technology Center of EnergyHammam LifTunisia
  3. 3.Faculty of ScienceNorthern Border UniversityArarSaudi Arabia
  4. 4.Energy and Matter Research Laboratory (LR16CNSTN02)National Centre for Nuclear Sciences and TechnologySidi-ThabetTunisia
  5. 5.Experimental Programs Laboratory (LPE)Saint Paul-Lez-DuranceFrance
  6. 6.Research Unit, Physics of Insulating and Semi-insulating MaterialsUniversity of SfaxSfaxTunisia
  7. 7.Faculty of SciencesUniversity of BishaBishaSaudi Arabia
  8. 8.Faculty of Science, Chemistry DepartmentNew Valley UniversityAl-KhargaEgypt

Personalised recommendations