Applied Physics A

, 125:761 | Cite as

Scalable and green production of porous graphene nanosheets for flexible supercapacitors

  • Xinyue Liu
  • Jianxing Wang
  • Guowei YangEmail author


Graphene has showed great promise as supercapacitor electrode materials due to the fast charging/discharging rate, high theoretical surface area and excellent cyclic stability. However, scalable synthesis of graphene, especially with pore architectures, is still a challenge. Herein, we developed a scalable and green method to synthesize the porous graphene nanosheets (PGSs), which involved a liquid-phase exfoliation process carried out in water. PGSs and single-wall carbon nanotubes (SWCNTs) mixed suspension was vacuum filtered to fabricate the PGS@SWCNT composite film (GNCF) for electrode materials. The as-prepared free-standing GNCF electrode exhibits a desirable electrochemical energy storage capability due to the synergistic effect between PGSs and SWCNTs. In addition, the holes out of nanosheets and the pores in plane provide more electrolyte ion transport channels. To assess the practical applications of the GNCF, a flexible symmetric all-solid-state supercapacitor was fabricated. Such a supercapacitor device delivers a specific capacitance of 202.5 F/g at 10 mV/s, along with an outstanding cyclic stability with the capacitance retention of 91.2% over 10,000 cycles. These performances are comparable with those of the graphene-based electrodes prepared by CVD or Hummers’ method. These findings provide a cost-effective, environmentally friendly and scalable method for the production of porous graphene nanosheets which can be used in supercapacitors.



The National Basic Research Program of China (2014CB931700), Science and Technology Planning Project of Guangdong Province (20170918) and State Key Laboratory of Optoelectronic Materials and Technologies supported this work.


  1. 1.
    A.C. Ferrari, J.C. Mever, V. Scardaci, C. Casiraqhi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)ADSGoogle Scholar
  2. 2.
    F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007)ADSGoogle Scholar
  3. 3.
    J.T. Robinson, M. Zalalutdinov, J.W. Baldwin, E.S. Snow, Z. Wei, P. Sheehan, B.H. Housyon, Wafer-scale reduced graphene oxide films for nanomechanical devices. Nano Lett. 8, 3441–3445 (2008)ADSGoogle Scholar
  4. 4.
    J. Hassoun, F. Bonaccorso, M. Aqostini, M. Anqelucci, M.G. Betti, R. Cinqolani, M. Gemmi, C. Mariani, S. Panero, V. Pelleqrini, B. Scrosati, An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode. Nano Lett. 14, 4901–4906 (2014)ADSGoogle Scholar
  5. 5.
    A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2008)ADSGoogle Scholar
  6. 6.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)ADSGoogle Scholar
  7. 7.
    Y. Zhang, K. Fugane, T. Mori, L. Niu, J. Ye, Wet chemical synthesis of nitrogen-doped graphene towards oxygen reduction electrocatalysts without high-temperature pyrolysis. J. Mater. Chem. 22, 6575–6580 (2012)Google Scholar
  8. 8.
    V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Liquid exfoliation of layered materials. Science 340, 1226419 (2013)Google Scholar
  9. 9.
    M. Lotya, Y. Hernandez, P.J. King, R.J. Smith, V. Nicolosi, L.S. Karisson, F.M. Blighe, S. De, Z.M. Wang, I.T. McGovern, G.S. Duesberg, J.N. Coleman, Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 131, 3611–3620 (2019)Google Scholar
  10. 10.
    S. Vadukumpully, J. Paul, S. Valiyaveettil, Cationic surfactant mediated exfoliation of graphite into graphene flakes. Carbon 47, 3288–3294 (2009)Google Scholar
  11. 11.
    J.R. Miller, P. Simon, Electrochemical capacitors for energy management. Science 321, 651–652 (2008)Google Scholar
  12. 12.
    Y. Huang, M. Zhong, Y. Huang, M. Zhu, Z. Pei, Z. Wang, Q. Xue, X. Xie, C. Zhi, A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nat. Commun. 6, 10310 (2015)ADSGoogle Scholar
  13. 13.
    C. Wu, Y. Zhu, M. Ding, C.K. Jia, K.L. Zhang, Fabrication of plate-like MnO2 with excellent cycle stability for supercapacitor electrodes. Electrochim. Acta 291, 249–255 (2018)Google Scholar
  14. 14.
    W. Fan, C. Zhang, W.W. Tjiu, K.P. Pramoda, C. He, T. Liu, Graphene-wrapped polyaniline hollow spheres as novel hybrid electrode materials for supercapacitor applications. ACS Appl. Mater. Interfaces 5, 3382–3391 (2013)Google Scholar
  15. 15.
    L. Ji, P. Meduri, V. Agubra, X. Xiao, M. Alcoutlabi, Graphene-based nanocomposites for energy storage. Adv. Energy Mater. 6, 1502159 (2016)Google Scholar
  16. 16.
    S.H. Aboutalebi, R. Jalili, D.E.M. Salari, Z. Gholamvand, S.A. Yamini, K. Konstantinov, R.L. Shepherd, J. Chen, S.E. Moulton, P.C. Innis, A.I. Minett, J.M. Razal, G.G. Wallace, High-performance multifunctional graphene yarns: toward wearable all-carbon energy storage textiles. ACS Nano 8, 2456–2466 (2014)Google Scholar
  17. 17.
    X.N. Tang, C.Z. Liu, X.R. Chen, Y.Q. Deng, X.H. Chen, J.J. Shao, Q.H. Yang, Graphene aerogel derived by purification-free graphite oxide for high performance supercapacitor electrodes. Carbon 146, 147–154 (2019)Google Scholar
  18. 18.
    D.J. Hsu, Y.W. Chi, K.P. Huang, C.C. Huang, Electrochemical activation of vertically grown graphene nanowalls synthesized by plasma-enhanced chemical vapor deposition for high-voltage supercapacitors. Electrochim. Acta 300, 324–332 (2019)Google Scholar
  19. 19.
    S. Murali, N. Quarles, L.L. Zhang, J.R. Potts, Z. Tan, Y. Lu, Y. Zhu, R.S. Ruoff, Volumetric capacitance of compressed activated microwave-expanded graphite oxide (a-MEGO) electrodes. Nano Energy 2, 764–768 (2013)Google Scholar
  20. 20.
    Z. Lu, J. Foroughi, Ca. Wang, H. Long, G.G. Wallace, Superelastic hybrid CNT/graphene fibers for wearable energy storage. Adv. Energy Mater. 8, 1702047 (2017)Google Scholar
  21. 21.
    L.Z. Sheng, J. Chang, L.L. Jiang, Z.M. Jiang, Z. Liu, T. Wei, Z.J. Fan, Multilayer-folded graphene ribbon film with ultrahigh areal capacitance and high Rate performance for compressible supercapacitors. Adv. Funct. Mater. 28, 1800597 (2018)Google Scholar
  22. 22.
    F. Tuinstra, J.L. Koenig, Raman spectrum of graphite. J. Chem. Phys. 53, 1126–1130 (1970)ADSGoogle Scholar
  23. 23.
    A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095–14107 (2000)ADSGoogle Scholar
  24. 24.
    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)Google Scholar
  25. 25.
    C.J. Shih, A. Vijayaraghavan, R. Krishnan, R. Sharma, J.H. Han, M.H. Ham, Z. Jin, S. Lin, G.L. Paulus, N.F. Reuel, Q.H. Wang, D. Blankschtein, M.S. Strano, Bi- and tri-layer graphene solutions. Nat. Nanotechnol. 6, 439–445 (2011)ADSGoogle Scholar
  26. 26.
    A. Vadivel-Murugan, T. Muraliganth, A. Manthiram, Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for electrochemical energy storage. Chem. Mater. 21, 5004–5006 (2009)Google Scholar
  27. 27.
    H. Bai, Y. Xu, L. Zhao, C. Li, G. Shi, Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chem. Commun. 13, 1667–1669 (2009)Google Scholar
  28. 28.
    Y. Xu, K. Sheng, C. Li, G. Shi, Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4, 4324–4330 (2010)Google Scholar
  29. 29.
    B. Xu, S. Yue, Z. Sui, X. Zhang, S. Hou, G. Cao, Y. Yang, What is the choice for supercapacitors: graphene or graphene oxide? Energy Environ. Sci. 4, 2826–2830 (2011)Google Scholar
  30. 30.
    J.H. Ding, H.R. Zhao, H.B. Yu, A water-based green approach to large-scale production of aqueous compatible graphene nanoplates. Sci. Rep. 8, 5567 (2018)ADSGoogle Scholar
  31. 31.
    K. Zhang, J. Tang, J.S. Yuan, J. Li, Y.G. Sun, Y. Matsuba, D.M. Zhu, L.C. Qin, Production of few-layer graphene via enhanced high-pressure shear exfoliation in liquid for supercapacitor applications. ACS Appl. Nano Mater. 1, 2877–2884 (2018)Google Scholar
  32. 32.
    J.H. Lee, N. Park, B.G. Kim, D.S. Jung, K. Im, J. Hur, J. Wook Choi, Restacking-inhibited 3D reduced graphene oxide for high performance supercapacitor electrodes. ACS Nano 7, 9366–9374 (2013)Google Scholar
  33. 33.
    Y.S. Yun, S.Y. Cho, J. Shim, B.H. Kim, S.J. Chang, S.J. Baek, Y.S. Huh, Y. Tak, Y.W. Park, S. Park, H.J. Jin, Microporous carbon nanoplates from regenerated silk proteins for supercapacitors. Adv. Mater. 25, 1993–1998 (2013)Google Scholar
  34. 34.
    X.J. He, P.H. Ling, M.X. Yu, X.T. Wang, X.Y. Zhang, M.D. Zheng, Rice husk-derived porous carbons with high capacitance by ZnCl2 activation for supercapacitors. Electrochim. Acta 105, 635–641 (2013)Google Scholar
  35. 35.
    V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna, S.H. Tolbert, H.D. Abruna, P. Simon, B. Dunn, High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518–522 (2013)ADSGoogle Scholar
  36. 36.
    T.Q. Lin, I.W. Chen, F.X. Liu, C.Y. Yang, H. Bi, F.F. Xu, F.Q. Huang, Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350, 1508–1513 (2015)ADSGoogle Scholar
  37. 37.
    H.S. Kim, J.B. Cook, H. Lin, J.S. Ko, S.H. Tolbert, V. Ozolins, B. Dunn, Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x. Nat. Mater. 16, 454–460 (2017)ADSGoogle Scholar
  38. 38.
    N. Xiao, H.T. Tan, J.X. Zhu, L.P. Tan, X.H. Rui, X.C. Dong, Q.Y. Yan, High-performance supercapacitor electrodes based on graphene achieved by thermal treatment with the aid of nitric acid. ACS Appl. Mater. Interface 5, 9656–9662 (2013)Google Scholar
  39. 39.
    J.N. Hao, Y.Q. Liao, Y.Y. Zhong, D. Shu, C. He, S.T. Guo, Y.L. Huang, J. Zhong, L.L. Hu, Three-dimensional graphene layers prepared by a gas-foaming method for supercapacitor applications. Carbon 94, 879–887 (2015)Google Scholar
  40. 40.
    K. Gopalsamy, J. Balamurugan, T.D. Thanh, N.H. Kima, J.H. Lee, Fabrication of nitrogen and sulfur co-doped graphene nanoribbons with porous architecture for high-performance supercapacitors. Chem. Eng. J. 312, 180–190 (2017)Google Scholar
  41. 41.
    S. Zhang, L. Sui, H.Q. Kang, H.Z. Dong, L.F. Dong, High performance of N-doped graphene with bubble-like textures for supercapacitors. Small 14, 1702570 (2018)Google Scholar
  42. 42.
    Y. Deng, A.F. Xu, W.T. Lu, Y.H. Yu, C.F.T.T. Shu, Graphene-based ordered mesoporous carbon hybrids with large surface areas for supercapacitors, New. J. Chem. 42, 7043–7048 (2018)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering, School of PhysicsSun Yat-sen UniversityGuangzhouPeople’s Republic of China

Personalised recommendations