Advertisement

Applied Physics A

, 125:759 | Cite as

Electric fatigue of BCZT ceramics sintered in different atmospheres

  • Qianwei Zhang
  • Wei CaiEmail author
  • Chuang Zhou
  • Ruicheng Xu
  • Shilong Zhang
  • Zhendong Li
  • Rongli Gao
  • Chunlin FuEmail author
Article
  • 22 Downloads

Abstract

Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) ceramics with excellent piezoelectric properties and environment friendliness are very potential alternatives for PbZrxTi1−xO3 (PZT) ceramics. The stability and reliability of ferroelectricity and piezoelectricity in BCZT ceramics under cyclic electric field are crucial to its long-term application. Herein, BCZT ceramics were synthesized by sol–gel method and different sintering atmospheres and the influences of sintering atmosphere on the fatigue behaviors of ferroelectric and piezoelectric properties have been investigated. XPS results confirm that the oxygen vacancy concentration of BCZT ceramics sintered in oxygen, air, and nitrogen atmosphere gradually increases. After 106 cycles, the polarization of all BCZT ceramics decreases to some extent and the fatigue resistance of polarization of BCZT ceramics sintered in the air is superior to BCZT ceramics sintered in oxygen and nitrogen atmospheres, which may result from the additional contribution of higher leakage current caused by relatively poor densification of BCZT ceramics sintered in air to polarization. The internal bias field of BCZT ceramics sintered in air, O2 and N2 atmospheres after fatigue decreases, and the reduced amplitude of internal bias field in BCZT ceramics with less oxygen vacancies sintered in air and oxygen atmospheres is obviously higher than that in BCZT ceramics with more oxygen vacancies sintered in nitrogen atmosphere, which is due to the redistribution of oxygen vacancy under the repetition of external electric field. After 106 cycles, the maximum electric field-induced strain and d33* of BCZT ceramics sintered in the air and oxygen atmospheres decrease and that of BCZT ceramics sintered in nitrogen atmosphere increases. The enhanced fatigue resistance of piezoelectric response of BCZT ceramics sintered in nitrogen atmosphere results from the interaction of (100) orientation, grain refinement, and “wake up” effect caused by the repetition of enough external electric field.

Notes

Acknowledgements

This work was supported by Excellent Talent Project in University of Chongqing (Grant No. 2017-35), the Science and Technology Innovation Project of Social Undertakings and People’s Livelihood Guarantee of Chongqing (Grant No. cstc2017shmsA90015), the Program for Creative Research Groups in University of Chongqing (Grant No. CXQT19031), the Leading Talents of Scientific and Technological Innovation in Chongqing (CSTCCXLJRC201919), the Chongqing Research Program of Basic Research and Frontier Technology (Grant No. CSTC2018jcyjAX0416).

References

  1. 1.
    S. Trolier-McKinstry, S. Zhang, A.J. Bell, X. Tan, Annu. Rev. Mater. Res. 48, 191 (2018)CrossRefGoogle Scholar
  2. 2.
    K. Shibata, R. Wang, T. Tou, J. Koruza, MRS Bull. 43, 612 (2018)CrossRefGoogle Scholar
  3. 3.
    Z. Du, C. Zhao, H.C. Thong, Z. Zhou, J. Zhou, K. Wang, C. Guan, H. Liu, J. Fang, J. Alloy Compd. 801, 27 (2019)CrossRefGoogle Scholar
  4. 4.
    X. Fu, W. Cai, G. Chen, R. Gao, J. Mater. Sci. Mater. Electron. 28, 8177 (2017)CrossRefGoogle Scholar
  5. 5.
    Z. Fan, J. Koruza, J. Rödel, X. Tan, Acta Mater. 151, 253 (2018)CrossRefGoogle Scholar
  6. 6.
    F. Han, J. Deng, X. Liu, T. Yan, S. Ren, X. Ma, S. Liu, B. Peng, L. Liu, Ceram. Int. 43, 5564 (2017)CrossRefGoogle Scholar
  7. 7.
    S. Pang, L. Yang, J. Qin, H. Qin, H. Xie, H. Wang, C. Zhou, J. Xu, Appl. Phys. A 125, 119 (2019)ADSCrossRefGoogle Scholar
  8. 8.
    K. Shalini, D. Prabhu, N. Giridharan, Appl. Phys. A 124, 866 (2018)ADSCrossRefGoogle Scholar
  9. 9.
    P. Li, J. Zhai, B. Shen, S. Zhang, X. Li, F. Zhu, X. Zhang, Adv. Mater. 30, 1705171 (2018)CrossRefGoogle Scholar
  10. 10.
    V. Bijalwan, H. Hughes, H. Pooladvand, P. Tofel, B. Nan, V. Holcman, Y. Bai, T.W. Button, Mater. Res. Bull. 114, 121 (2019)CrossRefGoogle Scholar
  11. 11.
    L. Wang, W. Bai, X. Zhao, F. Wen, L. Li, W. Wu, P. Zheng, J. Zhai, J. Mater. Sci. Mater. Electron. 30, 9219 (2019)CrossRefGoogle Scholar
  12. 12.
    W. Liu, X. Ren, Phys. Rev. Lett. 103, 257602 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    I. Coondoo, N. Panwar, D. Alikin, I. Bdikin, S.S. Islam, A. Turygin, V.Y. Shur, A.L. Kholkin, Acta Mater. 155, 331 (2018)CrossRefGoogle Scholar
  14. 14.
    S. Li, C. Wang, L. Li, Q. Shen, L. Zhang, J. Alloy Compd. 730, 182 (2018)CrossRefGoogle Scholar
  15. 15.
    M.B. Abdessalem, S. Aydi, A. Aydi, N. Abdelmoula, Z. Sassi, H. Khemakhem, Appl. Phys. A 123, 583 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    L. Jin, R. Huo, R. Guo, F. Li, D. Wang, Y. Tian, Q. Hu, X. Wei, Z. He, Y. Yan, ACS Appl. Mater. Interface 8, 31109 (2016)CrossRefGoogle Scholar
  17. 17.
    Y. Zhang, H. Sun, W. Chen, J. Phys. Chem. Solids 114, 207 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    Z. Liu, R. Yuan, D. Xue, W. Cao, T. Lookman, Acta Mater. 157, 155 (2018)CrossRefGoogle Scholar
  19. 19.
    Y. Liu, Y. Chang, F. Li, B. Yang, Y. Sun, J. Wu, S. Zhang, R. Wang, W. Cao, ACS Appl. Mater. Interface 9, 29863 (2017)CrossRefGoogle Scholar
  20. 20.
    W. Bai, D. Chen, P. Li, B. Shen, J. Zhai, Z. Ji, Ceram. Int. 42, 3429 (2016)CrossRefGoogle Scholar
  21. 21.
    Q. Zhang, W. Cai, Q. Li, R. Gao, G. Chen, X. Deng, Z. Wang, X. Cao, C. Fu, J. Alloy Compd. 794, 542 (2019)CrossRefGoogle Scholar
  22. 22.
    N. Chaiyo, D.P. Cann, N. Vittayakorn, Mater. Design. 133, 109 (2017)CrossRefGoogle Scholar
  23. 23.
    Y. Zhang, J. Glaum, M.C. Ehmke, K.J. Bowman, J.E. Blendell, M.J. Hoffman, J. Am. Ceram. Soc. 99, 1287 (2016)CrossRefGoogle Scholar
  24. 24.
    V. Rojas, J. Koruza, E.A. Patterson, M. Acosta, X. Jiang, N. Liu, C. Dietz, J. Rödel, J. Am. Ceram. Soc. 100, 4699 (2017)CrossRefGoogle Scholar
  25. 25.
    Y. Liu, Y. Chang, E. Sun, F. Li, S. Zhang, B. Yang, Y. Sun, J. Wu, W. Cao, ACS Appl. Mater. Interface 10, 31488 (2018)CrossRefGoogle Scholar
  26. 26.
    Y.A. Genenko, J. Glaum, M.J. Hoffmann, K. Albe, Mater. Sci. Eng. B Adv. 192, 52 (2015)CrossRefGoogle Scholar
  27. 27.
    J. Glaum, M. Hoffman, J. Am. Ceram. Soc. 97, 665 (2014)CrossRefGoogle Scholar
  28. 28.
    X. Jia, J. Zhang, L. Wang, J. Wang, H. Du, Y. Yao, L. Ren, F. Wen, P. Zheng, J. Am. Ceram. Soc. 102, 5203 (2019)CrossRefGoogle Scholar
  29. 29.
    K. Tanaka, S. Takatsuka, H. Nishiyama, K. Kakimoto, AIP Adv. 9, 045102 (2019)ADSCrossRefGoogle Scholar
  30. 30.
    B. Akkopru-Akgun, W. Zhu, M.T. Lanagan, S. Trolier-McKinstry, J. Am. Ceram. Soc. 102, 5328 (2019)CrossRefGoogle Scholar
  31. 31.
    Y.J. Kao, C.Y. Su, C. Pithan, D.F. Hennings, C.Y. Huang, R. Waser, J. Am. Ceram. Soc. 99, 1311 (2016)CrossRefGoogle Scholar
  32. 32.
    Q. Lin, D. Wang, S. Li, J. Am. Ceram. Soc. 98, 2094 (2015)CrossRefGoogle Scholar
  33. 33.
    S.W. Zhang, H. Zhang, B.P. Zhang, G. Zhao, J. Eur. Ceram. Soc. 29, 3235 (2009)CrossRefGoogle Scholar
  34. 34.
    Z. Shen, X. Wang, H. Gong, L. Wu, L. Li, Ceram. Int. 40, 13833 (2014)CrossRefGoogle Scholar
  35. 35.
    J.P.B. Silva, F.L. Faita, K. Kamakshi, K.C. Sekhar, J.A. Moreira, A. Almeida, M. Pereira, A.A. Pasa, M.J.M. Gomes, Sci. Rep.UK 7, 46350 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    W. Bai, J. Hao, B. Shen, F. Fu, J. Zhai, J. Alloy Compd. 536, 189 (2012)CrossRefGoogle Scholar
  37. 37.
    S. Ye, J. Fuh, L. Lu, Appl. Phys. Lett. 100, 252906 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    C. Yang, H. Sui, H. Wu, G. Hu, J. Alloys Compd. 637, 315 (2015)CrossRefGoogle Scholar
  39. 39.
    F. Zhang, L. Zhang, X. Guo, S. Yang, Q. Tian, S. Fan, Ceram. Int. 44, 13502 (2018)CrossRefGoogle Scholar
  40. 40.
    D. Deng, Q. Guo, W. Hu, J. Phy. B Atomic Mol. Opt. 41, 225402 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    J. Ma, X. Liu, W. Li, J. Alloy Compd. 581, 642 (2013)CrossRefGoogle Scholar
  42. 42.
    A. Tkach, O. Okhay, A. Almeida, P.M. Vilarinho, Acta Mater. 130, 249 (2017)CrossRefGoogle Scholar
  43. 43.
    L. Zhang, Z. Yao, M.T. Lanagan, H. Hao, J. Xie, Q. Xu, M. Yuan, M. Sarkarat, M. Cao, H. Liu, J. Eur. Ceram. Soc. 38, 2534 (2018)CrossRefGoogle Scholar
  44. 44.
    H. Kaddoussi, Y. Gagou, A. Lahmar, J. Belhadi, B. Allouche, J.L. Dellis, M. Courty, H. Khemakhem, M. El Marssi, Solid State Commun. 201, 64 (2015)ADSCrossRefGoogle Scholar
  45. 45.
    Z. Zhao, X. Li, H. Ji, Y. Dai, T. Li, J. Alloy Compd. 637, 291 (2015)CrossRefGoogle Scholar
  46. 46.
    Y. Zhang, J. Glaum, M.C. Ehmke, J.E. Blendell, K.J. Bowman, M.J. Hoffman, J. Am. Ceram. Soc. 99, 174 (2016)CrossRefGoogle Scholar
  47. 47.
    J. Zhao, Z. Yue, W. Wang, Z. Gui, L. Li, J. Electroceram. 21, 581 (2008)CrossRefGoogle Scholar
  48. 48.
    H. Simons, J. Glaum, J.E. Daniels, A.J. Studer, A. Liess, J. Rödel, M. Hoffman, J. Appl. Phys. 112, 044101 (2012)ADSCrossRefGoogle Scholar
  49. 49.
    O. Namsar, C. Uthaisar, S. Pojprapai, J. Mater. Sci. Mater. Electron. 29, 7188 (2018)CrossRefGoogle Scholar
  50. 50.
    H. Guo, X. Liu, J. Rödel, X. Tan, Adv. Funct. Mater. 25, 270 (2015)CrossRefGoogle Scholar
  51. 51.
    W.L. Tan, K.T. Faber, D.M. Kochmann, Acta Mater. 164, 704 (2019)CrossRefGoogle Scholar
  52. 52.
    G. Arlt, H. Neumann, Ferroelectr. 87, 109 (1988)CrossRefGoogle Scholar
  53. 53.
    Y. Chang, S. Poterala, D. Yener, G.L. Messing, J. Am. Ceram. Soc. 96, 1390 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Metallurgy and Materials EngineeringChongqing University of Science and Technology, University TownChongqingChina
  2. 2.Chongqing Key Laboratory of Nano/Micro Composite Material and DeviceUniversity TownChongqingChina

Personalised recommendations