Advertisement

Applied Physics A

, 125:846 | Cite as

Poly(aniline-co-3-aminophenol): enhanced crystallinity and solubility

  • Umesh S. WawareEmail author
  • Mohd RashidEmail author
  • A. M. S. Hamouda
Article
  • 26 Downloads

Abstract

An improvement of physiochemical properties such as solubility, crystallinity, and the surface morphology of the copolymer have been achieved via the in-situ copolymerization of the monomers units using ammonium persulfate as an oxidising agent. To study the optical behavior of the as-synthesized copolymers UV–Vis spectroscopic analysis has been performed. Atomic force microscopy has been used to study the roughness profile and surface morphology. For the functional group characterization of the copolymer, FT-IR analysis has been considered. Electrical conductivity has been investigated by the two-probe method. The conductivity of copolymers (PA-co-3-AP)s has been diminished overall. The amount of molar feed in the composition determines the nature of conductivity.

Notes

Acknowledgements

We are highly grateful to the Qatar University, Doha and University Sains Malaysia, Penang, Malaysia, for financial assistance and funding the research work. We are also thankful to Central Lab Unit (CLU) and Centre for Advance Materials (CAM) of the University.

References

  1. 1.
    J.C. Chiang, A.G. Macdiarmid, ‘Polyaniline’: protonic acid doping of the emeraldine form to the metallic regime. Synth. Met. 13, 193–205 (1986)CrossRefGoogle Scholar
  2. 2.
    W.S. Huang, B.D. Humphrey, A.G. MacDiarmid, Polyaniline, a novel conducting polymer: morphology and chemistry of its oxidation and reduction in aqueous electrolytes. J. Chem Soc. Faraday Trans. 1(82), 2385–2400 (1986)CrossRefGoogle Scholar
  3. 3.
    A.G. Macdiarmid, J.C. Chiang, A.F. Richter, A.J. Epstein, Polyaniline: a new concept in conducting polymers. Synth. Met. 18, 285–290 (1987)CrossRefGoogle Scholar
  4. 4.
    U.S. Waware, A.M.S. Hamouda, M. Rashid, Poly(aniline-co-2-hydroxyaniline): towards the thermal stability and higher solubility of polyaniline. Appl. Phys. A 125, 127 (2019)ADSCrossRefGoogle Scholar
  5. 5.
    U.S. Waware, M. Rashid, A. M. S. Hamouda, Highly improved AC conductivity of poly(aniline-o-fluoroaniline). Ionics 25(3), 1057–1065 (2019)CrossRefGoogle Scholar
  6. 6.
    U.S. Waware, A. M. S. Hamouda, D. Majumdar, Optimization of physicochemical and dielectric features in the conductive copolymers of aniline and 2-aminophenol. Polym. Bull. 76(11), 5603–5617 (2019)CrossRefGoogle Scholar
  7. 7.
    G. Han, Y. Liu, L. Zhang, E. Kan, S. Zhang, J. Tang, W. Tang, MnO2 Nanorods intercalating graphene oxide/polyaniline ternary composites for robust high-performance supercapacitors. Sci. Rep. 4, 1–7 (2014)Google Scholar
  8. 8.
    K. Deb, A. Bera, B. Saha, Tuning of electrical and optical properties of polyaniline incorporated functional paper for flexible circuits through oxidative chemical polymerization. RSC Adv. 6, 94795–94802 (2016)CrossRefGoogle Scholar
  9. 9.
    Y. Guo, T. Wang, F. Chen, X. Sun, X. Li, Z. Yu, P. Wan, X. Chen, Hierarchical graphene–polyaniline nanocomposite films for high-performance flexible electronic gas sensors. Nanoscale 8(23), 12073–12080 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    X.-G. Li, M.-R. Huang, W. Duan, Novel multifunctional polymers from aromatic diamines by oxidative polymerizations. Chem. Rev. 102(9), 2925–3030 (2002)CrossRefGoogle Scholar
  11. 11.
    P. Saini, V. Choudhary, S. Details, Electrical properties, and electromagnetic interference shielding response of processable copolymers of aniline. J. Mater. Sci. 48, 797 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    A.G. Macdiarmid, A.J. Heeger, Organic metals and semiconductors: the chemistry of polyacetylene, (CH)x, and its derivatives. Synth. Met. 1, 101–118 (1980)CrossRefGoogle Scholar
  13. 13.
    J. Zhang, D. Shan, S. Mu, A promising copolymer of aniline and m-aminophenol: chemical preparation, novel electric properties and characterization. Polymer 48, 1269–1275 (2007)CrossRefGoogle Scholar
  14. 14.
    U.S. Waware, M. Rashid, A.M.S. Hamouda, Thermal stability and frequency-dependent electrical conductivity of poly(aniline-co-m-nitroaniline). Ionics 25, 2669–2676 (2019)CrossRefGoogle Scholar
  15. 15.
    M. Yang, K. Cao, L. Sui, Q. Ying, J. Zhu, A. Waas, E.M. Arruda, J. Kieffer, M.D. Thouless, N.A. Kotov, Dispersions of aramid nanofibers: a new nanoscale building block. ACS Nano 5(9), 6945 (2011)CrossRefGoogle Scholar
  16. 16.
    P. Saini, E. Ali, J. Parvaneh, Polymerization of aniline through simultaneous chemical and electrochemical routes. Polym. J. 38(7), 651–658 (2006)CrossRefGoogle Scholar
  17. 17.
    L. Meiling, Y. Min, Y. Qin, Z. Youyu, X. Qingji, Y. Shouzhuo, New method for characterizing the growth and properties of polyaniline and poly(aniline-co-o-aminophenol) films with the combination of EQCM and in situ FTIR spectroelectrochemistry. Electrochim. Acta. 52, 342–352 (2006)CrossRefGoogle Scholar
  18. 18.
    U.S. Waware, A.M.S. Hamouda, M. Rashid, G.J. Summers, The spectral and morphological studies of the conductive polyaniline thin film derivatives by the in situ copolymerization. J. Mater. Sci. Mater. Electron. 28, 15178 (2017)CrossRefGoogle Scholar
  19. 19.
    A. Haq, A. Shah, H. Rudolf, Spectroelectrochemistry of aniline-o-aminophenol copolymers. Electrochim. Acta. 52, 1374–1382 (2006)CrossRefGoogle Scholar
  20. 20.
    Y. Zhang, L. Qin, S. Li, Z. Jianping, The electrocatalytic reduction and removal of arsenate by poly(aniline-co-o-aminophenol). J. Electroanal. Chem. 636, 47–52 (2009)CrossRefGoogle Scholar
  21. 21.
    Y.H. Xiu, L.X. Qing, D. Maa, L. Zhong, K. Yong, X. Huai-Guo, One-step synthesis of MnO2 doped poly(aniline-co-o-aminophenol)and the capacitive behaviors of the conducting copolymer. Chin. Chem. Lett. 26, 1367–1370 (2015)CrossRefGoogle Scholar
  22. 22.
    U.S. Waware, G.J. Summers, M. Rashid, A.M.S. Hamouda, Electrochemical, morphological, and spectroscopic study of poly(aniline-co-o-bromoaniline) (PA-co-o-BrA) conducting copolymer. Ionics 24, 1701–1708 (2018)CrossRefGoogle Scholar
  23. 23.
    E.T. Kang, K.G. Neoh, K.L. Tan, ESCA studies of protonation in polyaniline. Polym. J. 21, 873–881 (1989)CrossRefGoogle Scholar
  24. 24.
    P. Saini, R. Jalan, S.K. Dhawan, Synthesis and characterization of processable polyaniline doped with novel dopant NaSIPA. J. Appl. Polym. Sci. 108, 1437 (2008)CrossRefGoogle Scholar
  25. 25.
    A.G. MacDiarmid, J.C. Chiang, A.F. Richter, A.J. Epstein, Polyaniline: a new concept in conducting polymers. Synth. Met. 18, 285–290 (1987)CrossRefGoogle Scholar
  26. 26.
    K. Tzou, R.V. Gregory, A method to prepare soluble polyaniline salt solutions—in situ doping of PANI base with organic dopants in polar solvents. Synth. Met. 53, 365 (1993)CrossRefGoogle Scholar
  27. 27.
    R.M. Silverstein, F.X. Webster, D.J. Kiemle, Identification of Organic Compounds, vol. 88, 7th edn. (Wiley, New York, 2005)Google Scholar
  28. 28.
    V.G. Kulkarni, L.D. Cambell, W.R. Mathew, Thermal stability of polyaniline. Synth. Met. 30, 321 (1989)CrossRefGoogle Scholar
  29. 29.
    J.A. Conklin, S.C. Huang, S.M. Huang, T. Wen, R.B. Kaner, Thermal properties of polyaniline and poly(aniline-co-o-ethylaniline). Macromolecules 28, 6522–6527 (1995)ADSCrossRefGoogle Scholar
  30. 30.
    B. Wunderlich, Thermal Analysis. Academic Press 2, 417–431 (1990)Google Scholar
  31. 31.
    D.-M. Fann, S.K. Huang, J.-Y. Lee, DSC studies on the crystallization characteristics of poly(ethylene terephthalate) for blow molding applications. Polym. Eng. Sci. 38(2), 265–273 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical and Industrial EngineeringQatar UniversityDohaQatar
  2. 2.School of Chemical SciencesUniversiti Sains MalaysiaPulau PinangMalaysia

Personalised recommendations