Applied Physics A

, 125:746 | Cite as

Ab initio calculation insights into the structural, elastic and mechanical properties of high-k dielectric gadolinium oxide (Gd2O3)

  • Mahabul Islam
  • Piu Rajak
  • Somnath BhattacharyyaEmail author


It is necessary to have insights into the structural, elastic, and mechanical behaviors of material among many other factors for integrating it to devices for large-scale technological applications. First-principles calculations based on density functional theory (DFT) were used to study the structural, elastic and mechanical properties of gadolinium oxide (Gd2O3) at the level of generalized gradient approximations in different polymorphic phases. All calculations were performed with the projector-augmented wave method within the framework of DFT in cubic (bixbyite), hexagonal, monoclinic as well as tetragonal phases. The results of lattice constants and different elastic moduli with generalized gradient approximation are found to be reliable. This study also reveals that the bulk modulus for all the phases of Gd2O3 lies around 100 GPa suggesting that the considered phases are soft in nature and can simply be deposited as better quality thin films, which is important for thin-film based applications. Elastic properties such as bulk and shear elastic moduli, mechanical stability and elastic anisotropy were calculated that is not available in the literature. In this observation, Gd2O3 exhibited ductile nature and mechanically stable behavior in all polymorphic phases.



The financial assistance from the Science and Engineering Research Board (SERB), core research Grant Project No. EMR/F/2017/001510 is acknowledged. The High-Performance Computing Environment (HPCE) maintained by P. G. Senapathy Center for Computing Resource at the Indian Institute of Technology Madras (IITM) is acknowledged for computing facilities. MI acknowledges MHRD, India for financial support through HTRA (teaching assistantship).

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

339_2019_3060_MOESM1_ESM.pdf (496 kb)
Supplementary material 1 (PDF 495 kb)


  1. 1.
    F.X. Zhang, M. Lang, J.W. Wang, U. Becker, R.C. Ewing, Phys. Rev. B 78, 064114 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    V. Skrikanth, A. Sato, J. Yoshimoto, J.H. Kim, T. Ikegami, Cryst. Res. Technol. 29, 981 (1994)CrossRefGoogle Scholar
  3. 3.
    S. Dueñas, H. Castán, H. García, A. Gómez, L. Bailón, K. Kukli, T. Hatanpää, J. Lu, M. Ritala, M. Leskelä, J. Electrochem. Soc. 154, G207 (2007)CrossRefGoogle Scholar
  4. 4.
    N.H. Menzler, F. Tietz, S. Uhlenbruck, H.P. Buchkremer, D. Stöver, J. Mater. Sci. 45, 3109 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    H. Jamnezhad, M. Jafari, J. Comput. Electron. 16, 272 (2017)CrossRefGoogle Scholar
  6. 6.
    V.A. Sadykov, N.V. Mezentseva, L.N. Bobrova, O.L. Smorygo, N.F. Eremeev, Y.E. Fedorova, Y.N. Bespalko, P.I. Skriabin, A.V. Krasnov, A.I. Lukashevich, T.A. Krieger, E.M. Sadovskaya, V.D. Belyaev, A.N. Shmakov, Z.S. Vinokurov, V.A. Bolotov, Y.Y. Tanashev, M.V. Korobeynikov, M.A. Mikhailenko, Advanced Materials for Solid Oxide Fuel Cells and Membrane Catalytic Reactors (Elsevier, Amsterdam, 2019)CrossRefGoogle Scholar
  7. 7.
    M. Balestrieri, S. Colis, M. Gallart, G. Schmerber, M. Ziegler, P. Gilliot, A. Dinia, J. Mater. Chem. C 3, 7014 (2015)CrossRefGoogle Scholar
  8. 8.
    M. Hong, J. Kwo, A.R. Kortan, J.P. Mannaerts, A.M. Sergent, Science 283, 1897 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    B. Rudraswamy, N. Dhananjaya, I.O.P. Conf, Ser. Mater. Sci. Eng. 40, 012034 (2012)Google Scholar
  10. 10.
    S. Seo, H. Yang, P.H. Holloway, J. Colloid Interface Sci. 331, 236 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    G. Bonnet, M. Lachkar, J.C. Colson, J.P. Larpin, Thin Solid Films 261, 31 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    W. Heitmann, Appl. Opt. 12, 394 (1973)ADSCrossRefGoogle Scholar
  13. 13.
    Y.Y. Gomeniuk, Y.V. Gomeniuk, A.N. Nazarov, V.S. Lysenko, H.J. Osten, A. Laha, Adv. Mater. Res. 276, 167 (2011)CrossRefGoogle Scholar
  14. 14.
    K.K. Phani, D. Sanyal, Mater. Sci. Eng. A 490, 305 (2008)CrossRefGoogle Scholar
  15. 15.
    G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996)ADSCrossRefGoogle Scholar
  16. 16.
    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  18. 18.
    S. Bajaj, C. Sevik, T. Cagin, A. Garay, P.E.A. Turchi, R. Arróyave, Comput. Mater. Sci. 59, 48 (2012)CrossRefGoogle Scholar
  19. 19.
    L. Bai, J. Liu, X. Li, S. Jiang, W. Xiao, Y. Li, L. Tang, Y. Zhang, D. Zhang, J. Appl. Phys. 106, 1 (2009)Google Scholar
  20. 20.
    Hendrik J. Monkhorst, Phys. Rev. B 13, 5188 (1976)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    B.J. Kennedy, M. Avdeev, Aust. J. Chem. 64, 119 (2011)CrossRefGoogle Scholar
  22. 22.
    R. Hill, Proc. Phys. Soc. Sect. A 65, 349 (1952)ADSCrossRefGoogle Scholar
  23. 23.
    Z.-J. Wu, E.-J. Zhao, H.-P. Xiang, X.-F. Hao, X.-J. Liu, J. Meng, Phys. Rev. B 76, 1 (2007)Google Scholar
  24. 24.
    J.J. Gilman, Electronic Basis of the Strength of Materials (Cambridge University Press, Cambridge, 2001)CrossRefGoogle Scholar
  25. 25.
    M. Rahm, N.V. Skorodumova, Phys. Rev. B 80, 1 (2009)CrossRefGoogle Scholar
  26. 26.
    D. Richard, L.A. Errico, M. Rentería, J. Alloys Compd. 664, 580 (2016)CrossRefGoogle Scholar
  27. 27.
    A.K. Pathak, T. Vazhappilly, Phys. Status Solidi Basic Res. 255, 1 (2018)Google Scholar
  28. 28.
    B. Wu, M. Zinkevich, F. Aldinger, D. Wen, L. Chen, J. Solid State Chem. 180, 3280 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    D. Lonappan, N.V.C. Shekar, P.C. Sahu, B.V. Kumarasamy, A.K. Bandyopadhyay, M. Rajagopalan, Philos. Mag. Lett. 88, 473 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    M. Fanciulli, G. Scarel, Rare Earth Oxide Thin Films Growth, Characterization, and Applications, 1st edn. (Springer, Berlin, 2007)CrossRefGoogle Scholar
  31. 31.
    M. Born, Math. Proc. Camb. Philos. Soc. 36, 160 (1940)ADSCrossRefGoogle Scholar
  32. 32.
    S.F. Pugh, Lond. Edinb. Dublin Philos. Mag. J. Sci. 45, 823 (1954)CrossRefGoogle Scholar
  33. 33.
    M. Roknuzzaman, J.A. Alarco, H. Wang, A. Du, T. Tesfamichael, K. (Ken) Ostrikov, Comput. Mater. Sci. 169, 109118 (2019)CrossRefGoogle Scholar
  34. 34.
    H. Ledbetter, A. Migliori, J. Appl. Phys. 100, 63516 (2006)CrossRefGoogle Scholar
  35. 35.
    S.I. Ranganathan, M. Ostoja-Starzewski, Phys. Rev. Lett. 101, 1 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Technology MadrasChennaiIndia
  2. 2.Department of Metallurgical and Materials EngineeringIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations