Advertisement

Applied Physics A

, 125:753 | Cite as

A novel porous silicon multi-ions selective electrode based extended gate field effect transistor for sodium, potassium, calcium, and magnesium sensor

  • E. A. KabaaEmail author
  • S. A. Abdulateef
  • Naser M. AhmedEmail author
  • Z. Hassan
  • Fayroz A. Sabah
Article
  • 27 Downloads

Abstract

One of the most informative parameters of the bio-chemical sensors is the multi-ions selectivity. Characterizing the biocompatible materials with high sensitivity and efficiency for the immobilization and detection of bio-signals and conversion of biochemical signal into quantifiable electronic signal is very important in biosensor research. Extended gate field-effect transistor (EGFET) based on porous silicon (PS) n-type (111) was characterized as sodium, potassium, calcium, and magnesium sensor over the concentration ranges 10−4 to 1 M of the four cations at room temperature. This study extracted the sensitivity of Na+, K+, Ca2+, and Mg2+ in terms of current/voltage sensitivity. Separate Solution Method was used to concept of PS response which suggest a single constant value of the potentiometric selectivity coefficient (\(K_{A,B}^{\text{pot}}\)). Regarding EGFET operation, PS manifested significantly enhanced Na+, K+, Ca2+, and Mg2+ voltage sensitivity of 58.76, 57.91, 34.90, and 31.75 mV/dec, respectively, and they are very close to the theoretical value of Nernst. Moreover, the Na+, K+, Ca2+, and Mg2+ current sensitivity was of 1.09, 1.04, 0.54, and 0.52 (µA)1/2/dec. PS showed high Na+ selectivity towards K+, Ca2+, and Mg2+. The results showed the values of the current/voltage sensitivity have high linearity. Using of PS n-type (111) as multi-ions sensor, and extracting the sensitivity of Na+, K+, Ca2+, and Mg2+ in terms of IDS were not reported in the literature.

Notes

Acknowledgements

The authors would like to thank the School of Physics at USM University for supporting this research and providing the appropriate research environment. Our gratitude also goes to the RCMO USM, for supporting us with the Bridging grant (304.PFIZIK.6316276).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    N. Metheny, Fluid and Electrolyte Balance (Jones & Bartlett Publishers, Burlington, 2011)Google Scholar
  2. 2.
    G. Bruno et al., The active modulation of drug release by an ionic field effect transistor for an ultra-low power implantable nanofluidic system. Nanoscale 8(44), 18718–18725 (2016)CrossRefGoogle Scholar
  3. 3.
    R.L. Stoop et al., Implementing silicon nanoribbon field-effect transistors as arrays for multiple ion detection. Biosensors 6(2), 21 (2016)CrossRefGoogle Scholar
  4. 4.
    M.R.M. Hussin, R. Ismail, I. Syono, Simulation and fabrication of extended gate ion sensitive field effect transistor for biosensor application, in Computer Applications for Security, Control and System Engineering, ed. by T. Kim, et al. (Springer, Berlin, 2012), pp. 396–403CrossRefGoogle Scholar
  5. 5.
    O. Knopfmacher et al., Silicon-based ion-sensitive field-effect transistor shows negligible dependence on salt concentration at constant pH. ChemPhysChem 13(5), 1157–1160 (2012)CrossRefGoogle Scholar
  6. 6.
    M. Wipf et al., Selective sodium sensing with gold-coated silicon nanowire field-effect transistors in a differential setup. ACS Nano 7(7), 5978–5983 (2013)CrossRefGoogle Scholar
  7. 7.
    J.-L. Lin, H.-Y. Hsu, Study of sodium ion selective electrodes and differential structures with anodized indium tin oxide. Sensors 10(3), 1798–1809 (2010)CrossRefGoogle Scholar
  8. 8.
    K. Melzer et al., Polymeric ion-selective membrane functionalized gate-electrodes: ion-selective response of electrolyte-gated poly (3-hexylthiophene) field-effect transistors. Org. Electron. 15(2), 595–601 (2014)CrossRefGoogle Scholar
  9. 9.
    B. Zhang et al., Structure, sodium ion role, and practical issues for β-alumina as a high-k solution-processed gate layer for transparent and low-voltage electronics. ACS Appl. Mater. Interfaces. 3(11), 4254–4261 (2011)CrossRefGoogle Scholar
  10. 10.
    A. Cazalé et al., Study of field effect transistors for the sodium ion detection using fluoropolysiloxane-based sensitive layers. Sensors Actuators B Chem. 177, 515–521 (2013)CrossRefGoogle Scholar
  11. 11.
    H. Li et al., Graphene field effect transistors for highly sensitive and selective detection of K + ions. Sensors Actuators B Chem. 253, 759–765 (2017)CrossRefGoogle Scholar
  12. 12.
    M. Ghittorelli et al., High-sensitivity ion detection at low voltages with current-driven organic electrochemical transistors. Nat. Commun. 9(1), 1441 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    T. Sakata et al., Ion sensitive transparent-gate transistor for visible cell sensing. Anal. Chem. 89(7), 3901–3908 (2017)CrossRefGoogle Scholar
  14. 14.
    P. Bergveld, Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans. Biomed. Eng. 1, 70–71 (1970)CrossRefGoogle Scholar
  15. 15.
    P. Batista et al., SnO2 extended gate field-effect transistor as pH sensor. Braz. J. Phys. 36(2A), 478–481 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    W.-Y. Chung et al., in Independent Component Analyses, Wavelets, Neural Networks, Biosystems, and Nanoengineering VIII, ed. by H.H. Szu, F. Jack Agee. Electronic Tongue System for Remote Multi-ion Sensing Using Blind Source Separation and Wireless Sensor Network (International Society for Optics and Photonics, ‎Bellingham, 2010)Google Scholar
  17. 17.
    M. Maj-Zurawska, A. Lewenstam, Selectivity coefficients of ion-selective magnesium electrodes used for simultaneous determination of magnesium and calcium ions. Talanta 87, 295–301 (2011)CrossRefGoogle Scholar
  18. 18.
    C. Fry, S. Langley, Ion-Selective Electrodes for Biological Systems (CRC Press, Boca Raton, 2014)Google Scholar
  19. 19.
    Y. Umezawa et al., Potentiometric selectivity coefficients of ion-selective electrodes. Part I. Inorganic cations (technical report). Pure Appl. Chem. 72(10), 1851–2082 (2000)CrossRefGoogle Scholar
  20. 20.
    L. Zhang, H. Shen, J. You, Improvement of the crystallinity of silicon films deposited by hot-wire chemical vapor deposition with negative substrate bias. J. Electron. Mater. 42(8), 2464–2469 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    B.D. Zdravkov et al., Pore classification in the characterization of porous materials: a perspective. Cent. Eur. J. Chem. 5(2), 385–395 (2007)Google Scholar
  22. 22.
    Nadia, S., et al. Effect of dopant concentration on the pore formation of porous silicon on n-type silicon, in 2014 IEEE 5th International Conference on Photonics (ICP) (IEEE, 2014)Google Scholar
  23. 23.
    P. Xie et al., Diameter-dependent dopant location in silicon and germanium nanowires. Proc. Natl. Acad. Sci. 106(36), 15254–15258 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    S. Rönnebeck et al., Crystal orientation dependence of macropore growth in n-type silicon. Electrochem. Solid State Lett. 2(3), 126–128 (1999)CrossRefGoogle Scholar
  25. 25.
    A. Das et al., Highly sensitive palladium oxide thin film extended gate FETs as pH sensor. Sensors Actuators B Chem. 205, 199–205 (2014)CrossRefGoogle Scholar
  26. 26.
    K. Melzer et al., Flexible electrolyte-gated ion-selective sensors based on carbon nanotube networks. IEEE Sensors J. 15(6), 3127–3134 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    A.J. Nozik, R. Memming, Physical chemistry of semiconductor—liquid interfaces. J. Phys. Chem. 100(31), 13061–13078 (1996)CrossRefGoogle Scholar
  28. 28.
    J. Lyklema, Fundamentals of Interface and Colloid Science: Soft Colloids, vol. 5 (Elsevier, Amsterdam, 2005)zbMATHGoogle Scholar
  29. 29.
    R. Beranek, (Photo) electrochemical methods for the determination of the band edge positions of TiO2-based nanomaterials. Adv. Phys. Chem. 2011, 786759 (2011)CrossRefGoogle Scholar
  30. 30.
    H. Du et al., Electric double-layer transistors: a review of recent progress. J. Mater. Sci. 50(17), 5641–5673 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    K. Minnici et al., High capacity Li-ion battery anodes: impact of crystallite size, surface chemistry and PEG-coating. Electrochim. Acta 260, 235–245 (2018)CrossRefGoogle Scholar
  32. 32.
    M. Tian et al., Enabling high-rate electrochemical flow capacitors based on mesoporous carbon microspheres suspension electrodes. J. Power Sources 364, 182–190 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    N.M. Ahmed et al., Characteristics of extended-gate field-effect transistor (EGFET) based on porous n-type (111) silicon for use in pH sensors. J. Electron. Mater. 46(10), 5804–5813 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    R.R.K. Reddy et al., Estimation of triglycerides by a porous silicon based potentiometric biosensor. Curr. Appl. Phys. 3(2–3), 155–161 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    S. Chen, S. Chang, S. Chang, Investigation of InN nanorod-based EGFET pH sensors fabricated on quartz substrate. Dig. J. Nanomater. Biostruct. 9(4), 1505–1511 (2014)Google Scholar
  36. 36.
    S.A. Pullano et al., Deep submicron EGFET based on transistor association technique for chemical sensing. Sensors 19(5), 1063 (2019)CrossRefGoogle Scholar
  37. 37.
    S. Pullano et al., EGFET-based sensors for bioanalytical applications: a review. Sensors 18(11), 4042 (2018)CrossRefGoogle Scholar
  38. 38.
    N. Zehfroosh, M. Shahmohammadi, S. Mohajerzadeh, High-sensitivity ion-selective field-effect transistors using nanoporous silicon. IEEE Electron Device Lett. 31(9), 1056–1058 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    A. Seki et al., Novel sensors for potassium, calcium and magnesium ions based on a silicon transducer as a light-addressable potentiometric sensor. Anal. Chim. Acta 382(1), 131–136 (1999)CrossRefGoogle Scholar
  40. 40.
    S. Bhattarai, K.H. Aschenbach, R.D. Gomez, Carbon nanotube based aqueous ion and pH sensor. Maryland Eng. Res. Internship Teams: Biosyst. Internships Engineers (Merit Bien), Technical report (2009), pp. 1–5Google Scholar
  41. 41.
    C.-H. Hsieh, Development of EGFET-based Sodium/Calcium/Chloride/Ammonium/Potassium Multi-ion Sensing Microsystem with a Solid-state Reference Electrode, Ph.D. Thesis (Sun Yat-Sen University, Taiwan, 2015), pp. 1–95Google Scholar
  42. 42.
    M. Trgo, J. Perić, N.V. Medvidović, The effect of concentration and pH on selectivity of ion exchange in system natural zeolite-Na^ +/Zn^2 + aqueous solutions, in Molecular Sieves: From Basic Research to Industrial Applications, ed. by J. Cejka (Elsevier, Amsterdam, 2005)Google Scholar
  43. 43.
    M.J. Madou, S.R. Morrison, Chemical Sensing with Solid State Devices (Elsevier, Amsterdam, 2012)Google Scholar
  44. 44.
    N.T. Tsona et al., Structures, hydration, and electrical mobilities of bisulfate ion-sulfuric acid–ammonia/dimethylamine clusters: a computational study. J. Phys. Chem. A 119(37), 9670–9679 (2015)CrossRefGoogle Scholar
  45. 45.
    W.M. Haynes, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2014)Google Scholar
  46. 46.
    F.J. Millero et al., Isothermal compressibility of aqueous sodium chloride, magnesium chloride, sodium sulfate, and magnesium sulfate solutions from 0 to 45. deg. at 1 atm. J. Phys. Chem. 78(16), 1636–1643 (1974)CrossRefGoogle Scholar
  47. 47.
    R. Weast et al., CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 1989)Google Scholar
  48. 48.
    A.A. Zavitsas, Aqueous solutions of calcium ions: hydration numbers and the effect of temperature. J. Phys. Chem. B 109(43), 20636–20640 (2005)CrossRefGoogle Scholar
  49. 49.
    D. Bucher et al., Coordination numbers of K + and Na + ions inside the selectivity filter of the KcsA potassium channel: insights from first principles molecular dynamics. Biophys. J. 98(10), L47–L49 (2010)CrossRefGoogle Scholar
  50. 50.
  51. 51.
    G. Dimeski, T. Badrick, A. St John, Ion selective electrodes (ISEs) and interferences—a review. Clin. Chim. Acta 411(5), 309–317 (2010)CrossRefGoogle Scholar
  52. 52.
    M.A. Milanick, K.L. Arnett, Extracellular protons regulate the extracellular cation selectivity of the sodium pump. J. Gen. Physiol. 120(4), 497–508 (2002)CrossRefGoogle Scholar
  53. 53.
    S. Wang et al., pH effects on measurements of ionized calcium and ionized magnesium in blood. Arch. Pathol. Lab. Med. 126(8), 947–950 (2002)Google Scholar
  54. 54.
    S.M. Buck et al., Nanoscale probes encapsulated by biologically localized embedding (PEBBLEs) for ion sensing and imaging in live cells. Talanta 63(1), 41–59 (2004)CrossRefGoogle Scholar
  55. 55.
    R. Mancinelli et al., Hydration of sodium, potassium, and chloride ions in solution and the concept of structure maker/breaker. J. Phys. Chem. B 111(48), 13570–13577 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Nano Optoelectronics Research and Technology (INOR)Universiti Sains MalaysiaPenangMalaysia
  2. 2.College of MedicineAl Iraqia UniversityBaghdadIraq
  3. 3.School of PhysicsUniversiti Sains MalaysiaPenangMalaysia

Personalised recommendations