Advertisement

Applied Physics A

, 125:752 | Cite as

Langmuir–Blodgett film properties of based on calix[4]resorcinarene and the detection of those against volatile organic compounds

  • S. Şen
  • R. ÇapanEmail author
  • Z. Özbek
  • M. E. Özel
  • G. A. Stanciu
  • F. Davis
Article
  • 79 Downloads

Abstract

To determine their inherent properties, thin films of calix[4]resorcinarene (C11AMINE) were deposited using the Langmuir–Blodgett (LB) technique onto a suitable substrate. Prior to the LB thin film preparation, this molecule was first studied at the air–water interface. For the characterization of the deposited film, UV–visible absorption spectroscopy and atomic force microscopy were used. Characterization results indicated that the Langmuir monolayer can be transferred from the water surface onto a glass or a quartz substrate with a transfer ratio of over 95%. This shows that this material is suitable for the preparation of high quality, uniform LB films. Later, gas sensing properties and thickness of these thin films were investigated using the surface plasmon resonance method. Thicknesses and the refractive index values of the C11AMINE films were obtained for differing number of layers. Then, the gas sensing properties towards vapours of four volatile organic compounds were examined: chloroform, benzene, toluene and ethanol. Reversible changes in the optical behaviour of thin films of C11AMINE were observed. It is found that thin films of this material are highly selective towards chloroform vapour, with rapid response and recovery times, making them suitable for practical chloroform-detection applications.

Notes

Acknowledgements

This work is supported by Turkish Scientific and Technological Research Council (TÜBITAK). Project No: TBAG-107T343.

References

  1. 1.
    S. Neethirajan, D.S. Jayas, S. Sadistap, Carbon dioxide (CO2) sensors for the agri-food industry. Food Bioprocess Technol. 2, 115–121 (2009)Google Scholar
  2. 2.
    M.G. Allen, Diode laser absorption sensors for gas-dynamic and combustion flows. Meas. Sci. Technol. 9, 545–562 (1998)ADSGoogle Scholar
  3. 3.
    W. Tsujita, A. Yoshino, H. Ishida, T. Moriizumi, Gas sensor network for air-pollution monitoring. Sens. Actuators B 110, 304–311 (2005)Google Scholar
  4. 4.
    O.S. Wolfbeis, Materials for fluorescence-based optical chemical sensors. J. Mater. Chem. 15, 2657–2669 (2005)Google Scholar
  5. 5.
    S.M. Fulk, M.R. Beaudry, G.T. Rochelle, Amine aerosol characterization by phase doppler interferometry. Energy Procedia 114, 939–951 (2017)Google Scholar
  6. 6.
    F. Feldera, M. Filla, M. Rahima, H. Zogga, N. Quackb, S. Blunierb, J. Dualb, Lead salt resonant cavity enhanced detector with MEMS mirror. Phys. Procedia 3, 1127–1131 (2010)ADSGoogle Scholar
  7. 7.
    F. Fathi, A. Rezabakhsh, R. Rahbarghazi, M.R. Rashidi, Early-stage detection of VE-cadherin during endothelial differentiation of human mesenchymal stem cells using SPR biosensor. Biosens. Bioelectron. 96, 358–366 (2017)Google Scholar
  8. 8.
    A. Colombelli, M.G. Manera, V. Borovkov, G. Giancane, L. Valli, R. Rella, Enhanced sensing properties of cobalt bis-porphyrin derivative thin films by a magneto-plasmonic-opto-chemical sensor. Sens. Actuators B 246, 1039–1048 (2017)Google Scholar
  9. 9.
    J.N. Wilde, J. Nagel, M.C. Petty, Optical sensing of aromatic hydrocarbons using Langmuir–Blodgett films of a Schiff base co-ordination polymer. Thin Solid Films 327–329, 726–729 (1998)ADSGoogle Scholar
  10. 10.
    G.J. Ashwell, K. Skjonnemand, M.P.S. Roberts, D.W. Allen, X. Li, J. Sworakowski, A. Chyla, M. Bienkowski, Surface plasmon resonance and nonlinear optical studies of Langmuir–Blodgett films of a betaine dye. Colloids Surf. A Physicochem. Eng. Asp. 155, 43–46 (1999)Google Scholar
  11. 11.
    J.D. Faull, V.K. Gupta, Chemical selectivity of self-assembled monolayers of calix[4]resorcinarene. Thin Solid Films 440, 129–137 (2003)ADSGoogle Scholar
  12. 12.
    M.W. Sugden, T.H. Richardson, F. Davis, S.P.J. Higson, C.F.J. Faul, Langmuir and LB properties of two calix[4]resorcinarenes: interactions with various analytes. Colloids Surf. A Physicochem. Eng. Asp. 321, 43–46 (2008)Google Scholar
  13. 13.
    Z.I. Katantseva, N.V. Lavrik, A.V. Nabok, O.P. Dimitriev, B.A. Nesterenko, V.I. Kalchenko, S.V. Vysotsky, L.N. Markovskiy, A.A. Marchenko, Structure and electronic properties of Langmuir–Blodgett films of calixarene/fullerene composites. Supramol. Sci. 4, 341–347 (1997)Google Scholar
  14. 14.
    L. Gurfidan, M. Ozmen, K. Atacan, I.H. Gubbuk, M. Ersoz, Z. Ozbek, R. Capan, Preparation and characterization of calix[6]arene Langmuir–Blodgett thin film. Thin Solid Films 520, 6238–6242 (2012)ADSGoogle Scholar
  15. 15.
    J. Torrent-Burgués, F. Vocanson, J.J. Pérez-González, A. Errachid, Synthesis, Langmuir and Langmuir–Blodgett films of a calix[7]arene ethyl ester. Colloids Surf. A Physicochem. Eng. Asp. 401, 137–147 (2012)Google Scholar
  16. 16.
    W.C. Moreira, P.J. Dutton, R. Aroca, Spectroscopic characterization and the effect of metal ions on Langmuir–Blodgett films of octasubstituted calix[4]resorcinarenes. Langmuir 11, 3137–3144 (1996)Google Scholar
  17. 17.
    R. Ebdelli, A. Rouis, R. Mlika, I. Bonnamour, H.B. Ouada, J. Davenas, Photo-physical and complexation properties of chromogenic azo-calix[4]arene: application to the detection of Eu. J. Mol. Struct. 1006, 210–215 (2011)ADSGoogle Scholar
  18. 18.
    A. Rouis, M. Echabaane, N. Sakly, I. Bonnamour, H.B. Ouada, Characterization of a sensitive and selective copper optode based on β-ketoimine modified calix[4]arene derivative. Mater. Sci. Eng. C 46, 125–131 (2015)Google Scholar
  19. 19.
    J.Y. Na, B. Kang, D.H. Sin, K. Cho, Y.D. Park, Understanding solidification of polythiophene thin films during spin–coating: effects of spin–coating time and processing additives. Nature 5, 13288 (2015)Google Scholar
  20. 20.
    J. Roales, J.M. Pedrosa, P. Castillero, M. Cano, T.H. Richardson, Optimization of mixed Langmuir–Blodgett films of a water insoluble porphyrin in a calixarene matrix for optical gas sensing. Thin Solid Films 519, 2025–2030 (2011)ADSGoogle Scholar
  21. 21.
    G. Zheng, M. Chen, X. Liu, J. Zhou, J. Xie, G. Diao, Self-assembled thiolated calix[n]arene (n = 4, 6, 8) films on gold electrodes and application for electrochemical determination dopamine. Electrochim. Acta 136, 301–309 (2014)Google Scholar
  22. 22.
    I. Pockrand, Surface plasmon resonance at silver surfaces with thin transparent and absorbing coatings. Surf. Sci. 72, 577–588 (1978)ADSGoogle Scholar
  23. 23.
    M. Erdoğan, R. Capan, F. Davis, Swelling behaviour of calixarene film exposed to various organic vapours by surface plasmon resonance technique. Sens. Actuators B 145, 66–70 (2010)Google Scholar
  24. 24.
    A.V. Nabok, A.K. Hassan, A.K. Raya, O. Omar, V.I. Kalchenko, Study of adsorption of some organic molecules in calix[4]resorcinolarene LB films by surface plasmon resonance. Sens. Actuators B 45, 115–121 (1997)Google Scholar
  25. 25.
    A.K. Hassan, C. Goy, A.V. Nabok, Interaction of volatile organic vapours with azo-calix[4]-resorcinarene and poly(9-vinylcarbazole) thin films using SPR measurements. Thin Solid Films 516, 9006–9011 (2008)ADSGoogle Scholar
  26. 26.
    Z. Özbek, R. Çapan, H. Göktaş, S. Şen, F.G. İnce, M.E. Özel, F. Davis, Optical parameters of calix[4]arene films and their response to volatile organic vapours. Sens. Actuators B Chem. 158, 235–240 (2011)Google Scholar
  27. 27.
    R. Capan, H. Göktas, Z. Özbek, S. Sen, M.E. Özel, F. Davis, Langmuir–Blodgett thin film for chloroform detection. Appl. Surf. Sci. 350, 129–134 (2015)Google Scholar
  28. 28.
    A.V. Nabok, N.V. Lavrik, Z.I. Kazantseva, B.A. Nesterenko, L.N. Markovskiy, V.I. Kalchenko, A.N. Shivaniuk, Complexing properties of calix[4]resorcinolarene LB films. Thin Solid Films 259, 244–247 (1995)ADSGoogle Scholar
  29. 29.
    R. Capan, Z. Ozbek, H. Goktas, S. Sen, F.G. Ince, M.E. Ozel, G.A. Stanciu, F. Davis, Characterization of Langmuir–Blodgett films of a calix[8]arene and sensing properties towards volatile organic vapours. Sens. Actuators B 148, 358–365 (2010)Google Scholar
  30. 30.
    S.D. Collyer, F. Davis, A. Lucke, C.J.M. Stirling, S.P.J. Higson, The electrochemistry of the ferri/ferrocyanide couple at a calix[4]resorcinarenetetrathiol modified gold electrode as a study of novel electrode modifying coatings for use within electro-analytical sensors. J. Electroanalyt. Chem. 549, 119–127 (2003)Google Scholar
  31. 31.
    M. Ozmen, Z. Ozbek, M. Bayrakci, S. Ertul, Preparation and gas sensing properties of Langmuir–Blodgett thin films of calix[n]arenes: investigation of cavity effect. Sens. Actuators B 195, 156–164 (2014)Google Scholar
  32. 32.
    K.V. Kostyukevych, R.V. Khristosenko, A.S. Pavluchenko, A.A. Vakhula, Z.I. Kazantseva, I.A. Koshets, Y.M. Shirshov, A nanostructural model of ethanol adsorption in thin calixarene films. Sens. Actuators B 223, 470–480 (2016)Google Scholar
  33. 33.
    A.V. Nabok, A.K. Hassan, A.K. Ray, Condensation of organic vapours within nanoporous calixarene thin films. J. Mater. Chem. 10, 189–194 (2000)Google Scholar
  34. 34.
    V. Kumar, K.H. Kim, P. Kumar, B.H. Jeon, J.C. Kim, Functional hybrid nanostructure materials: advanced strategies for sensing applications toward volatile organic compounds. Coord. Chem. Rev. 342, 80–105 (2017)Google Scholar
  35. 35.
    Y. Acikbas, R. Capan, M. Erdogan, L. Bulut, C. Soykan, Optical characterization and swelling behaviour of Langmuir–Blodgett thin films of a novelpoly[(styrene (ST)-co-glycidyl methacrylate (GMA)]. Sens. Actuators B 241, 1111–1120 (2017)Google Scholar
  36. 36.
    Z. Ozbek, M. Erdogan, R. Capan, Swelling behavior of pyrene-labelled polystyrene LB thin film exposed to various volatile organic vapours. Sens. Actuators B 196, 328–335 (2014)Google Scholar
  37. 37.
    H. Yuan, B.H. Kang, H.M. Jeonga, H.C. Kwon, S.H. Yeom, J.S. Leea, D.H. Kwonc, S.W. Kang, Room temperature VOC gas detection using a gated lateral BJT with an assembled solvatochromic dye. Sens. Actuators B 187, 288–294 (2013)Google Scholar
  38. 38.
    A. Rydosza, E. Maciak, K. Wincza, S. Gruszczynski, Microwave-based sensors with phthalocyanine films for acetone, ethanol and methanol detection. Sens. Actuators B 237, 876–886 (2016)Google Scholar
  39. 39.
    T. Ceyhan, A. Altındal, A.R. Ozkaya, M.K. Erbil, O. Bekaroğlu, Synthesis, characterization and electrochemical, electrical and gas sensing properties of a novel tert-butylcalix[4]arene bridged bis double-decker lutetium(III) phthalocyanine. Polyhedron 26, 73–84 (2007)Google Scholar
  40. 40.
    M. Ozmen, Z. Ozbek, M. Bayrakci, S. Ertul, M. Ersoz, R. Capan, Preparation of Langmuir–Blodgett thin films of calix[6]arenes and p-tert butyl group effect on their gas sensing properties. Appl. Surf. Sci. 359, 364–371 (2015)ADSGoogle Scholar
  41. 41.
    Y. Nishijima, S. Shimizu, K. Kurihara, Y. Hashimoto, H. Takahashi, A. Balcytis, G. Seniutinas, S. Okazaki, J. Juodkazyte, T. Iwasa, T. Taketsugu, Y. Tominaga, S. Juodkazis, Optical readout of hydrogen storage in films of Au and Pd. Opt. Express 25, 24081–24092 (2017)ADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Arts and ScienceÇanakkale Onsekiz Mart UniversityÇanakkaleTurkey
  2. 2.Department of Physics, Faculty of Arts and ScienceBalikesir UniversityBalıkesirTurkey
  3. 3.Department of Bioengineering, Faculty of EngineeringÇanakkale Onsekiz Mart UniversityÇanakkaleTurkey
  4. 4.Faculty of EngineeringFatih Sultan Mehmet Vakıf UniversityIstanbulTurkey
  5. 5.Department of Physics, Center for Microscopy, Microanalysis and Information ProcessingUniversity “Politehnica” of BucharestBucharestRomania
  6. 6.Department of Engineering and DesignUniversity of ChichesterBognor RegisUK

Personalised recommendations