Advertisement

Applied Physics A

, 125:765 | Cite as

Negative photoconductivity observed in polycrystalline monolayer molybdenum disulfide prepared by chemical vapor deposition

  • Xuling Xiao
  • Jun LiEmail author
  • Jie Wu
  • Donglin Lu
  • Chao TangEmail author
Article
  • 57 Downloads

Abstract

In this paper, the negative photoconductivity (NPC) was observed in molybdenum disulfide (MoS2) prepared by chemical vapor deposition. The conductivity drops by 15% in stable light excitation. We speculate that the generation of NPC is due to the electronic transition to the defect state level, which reduces the rate of movement of non-equilibrium carrier. In the low-defect system, free excitons predominate, and the material exhibits positive photoconductivity. It is beneficial to the research on a new single-wavelength photodetector based on NPC.

Notes

Acknowledgements

This work was financially supported by the Scientific Research Found of Hunan Provincial Education Department (no. 17K086).

References

  1. 1.
    H. Qiao, J. Yuan, Z. Xu, C. Chen, S. Lin, Y. Wang, J. Song, Y. Liu, Q. Khan, H.Y. Hoh, ACS Nano 9, 1886–1894 (2015)Google Scholar
  2. 2.
    H.S. Lee, S.-W. Min, Y.-G. Chang, M.K. Park, T. Nam, H. Kim, J.H. Kim, S. Ryu, S. Im, Nano Lett. 12, 3695–3700 (2012)ADSGoogle Scholar
  3. 3.
    J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, Science 331, 568–571 (2011)ADSGoogle Scholar
  4. 4.
    N. Joshi, Art. Science and Technology. Photoconductivity, 2nd edn. (Marcel Dekker, New York, 1990), pp. 1–33Google Scholar
  5. 5.
    G. Du, Z. Guo, S. Wang, R. Zeng, Z. Chen, H. Liu, Chem. Commun. 46, 1106–1108 (2010)Google Scholar
  6. 6.
    X. Zhang, J. Jie, Z. Wang, C. Wu, L. Wang, Q. Peng, Y. Yu, P. Jiang, C. Xie, J. Mater. Chem. 21, 6736–6741 (2011)Google Scholar
  7. 7.
    L. Li, E. Auer, M. Liao, X. Fang, T. Zhai, U.K. Gautam, A. Lugstein, Y. Koide, Y. Bando, D. Golberg, Nanoscale 3, 1120–1126 (2011)ADSGoogle Scholar
  8. 8.
    Y. Yang, X. Peng, H.-S. Kim, T. Kim, S. Jeon, H.K. Kang, W. Choi, J. Song, Y.-J. Doh, D. Yu, Nano Lett. 15, 5875–5882 (2015)ADSGoogle Scholar
  9. 9.
    S. Panigrahi, A. Bera, D. Basak, ACS Appl. Mater. Interfaces. 1, 2408–2411 (2009)Google Scholar
  10. 10.
    H. Huang, R. Chen, H. Chen, T. Liu, C. Kuo, C. Chen, H. Hsu, L. Chen, K. Chen, Y. Yang, Appl. Phys. Lett. 96, 062104 (2010)ADSGoogle Scholar
  11. 11.
    B.H. Kim, S.H. Kwon, H.H. Gu, Y.J. Yoon, Phys. E 106, 45–49 (2019)Google Scholar
  12. 12.
    Y. Fan, A.W. Robertson, X. Zhang, M. Tweedie, Y. Zhou, M.H. Rummeli, H. Zheng, J.H. Warner, ACS Appl. Mater. Interfaces 8, 32963–32970 (2016)Google Scholar
  13. 13.
    Z.M. Liao, Y. Lu, J. Xu, Appl. Phys. A 95(2), 363–366 (2009)ADSGoogle Scholar
  14. 14.
    P.-C. Wei, S. Chattopadhyay, M.-D. Yang, S.-C. Tong, J.-L. Shen, C.-Y. Lu, H.-C. Shih, L.-C. Chen, K.-H. Chen, Phys. Rev. B 81, 045306 (2010)ADSGoogle Scholar
  15. 15.
    P. Kossacki, Acta Phys. Pol. A 2, 237–248 (2001)Google Scholar
  16. 16.
    A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, Nano Lett. 10, 1271–1275 (2010)ADSGoogle Scholar
  17. 17.
    Y. Wang, E. Liu, A. Gao, T. Cao, M. Long, C. Pan, L. Zhang, J. Zeng, C. Wang, W. Hu, ACS Nano 12, 9513–9520 (2018)Google Scholar
  18. 18.
    Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, H. Zhang, ACS Nano 6, 74–80 (2011)Google Scholar
  19. 19.
    Q. Liu, B. Cook, M. Gong, Y. Gong, D. Ewing, M. Casper, A. Stramel, J. Wu, ACS Appl. Mater. Interfaces 9, 12728–12733 (2017)Google Scholar
  20. 20.
    W. Wang, A. Klots, D. Prasai, Y. Yang, K.I. Bolotin, J. Valentine, Nano Lett. 15, 7440–7444 (2015)ADSGoogle Scholar
  21. 21.
    W. Bao, X. Cai, D. Kim, K. Sridhara, M.S. Fuhrer, Appl. Phys. Lett. 102, 042104 (2013)ADSGoogle Scholar
  22. 22.
    A.J. Wirth-Lima, P.P. Alves-Sousa, W. Bezerra-Fraga, Appl. Phys. A 125(4), 241 (2019)ADSGoogle Scholar
  23. 23.
    F. Urban, M. Passacantando, F. Giubileo, L. Iemmo, A.D. Bartolomeo, Nanomaterials 8(3), 151 (2018)Google Scholar
  24. 24.
    Z. Nie, R. Long, J.S. Teguh, C.-C. Huang, D.W. Hewak, E.K. Yeow, Z. Shen, O.V. Prezhdo, Z.-H. Loh, J. Phys. Chem. C 119, 20698–20708 (2015)Google Scholar
  25. 25.
    T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, C. Schüller, Appl. Phys. Lett. 99, 102109 (2011)ADSGoogle Scholar
  26. 26.
    P.D. Cunningham, K.M. McCreary, A.T. Hanbicki, M. Currie, B.T. Jonker, L.M. Hayden, J. Phys. Chem. C 120, 5819–5826 (2016)Google Scholar
  27. 27.
    S. Sim, J. Park, J.-G. Song, C. In, Y.-S. Lee, H. Kim, H. Choi, Phys. Rev. B 88, 075434 (2013)ADSGoogle Scholar
  28. 28.
    A.D. Bartolomeo, L. Genovese, T. Foller, F. Giubileo, G. Luongo, L. Croin, M. Schleberger, Nanotechnology 28(21), 214002 (2017)ADSGoogle Scholar
  29. 29.
    P. Blake, E. Hill, A. Castro Neto, K. Novoselov, D. Jiang, R. Yang, T. Booth, A. Geim, Appl. Phys. Lett. 91, 063124 (2007)ADSGoogle Scholar
  30. 30.
    S. Luo, G. Hao, Y. Fan, L. Kou, C. He, X. Qi, C. Tang, J. Li, K. Huang, J. Zhong, Nanotechnology 26, 105705 (2015)ADSGoogle Scholar
  31. 31.
    H. Terrones, E. Del Corro, S. Feng, J. Poumirol, D. Rhodes, D. Smirnov, N. Pradhan, Z. Lin, M. Nguyen, A. Elias, Sci. Rep. 4, 4215 (2014)Google Scholar
  32. 32.
    X. Zhang, W. Han, J. Wu, S. Milana, Y. Lu, Q. Li, A.C. Ferrari, P. Tan, Phys. Rev. B 87, 115413 (2013)ADSGoogle Scholar
  33. 33.
    H. Shi, R. Yan, S. Bertolazzi, J. Brivio, B. Gao, A. Kis, D. Jena, H.G. Xing, L. Huang, ACS Nano 7, 1072–1080 (2013)Google Scholar
  34. 34.
    R. Wang, B.A. Ruzicka, N. Kumar, M.Z. Bellus, H.-Y. Chiu, H. Zhao, Phys. Rev. B 86, 045406 (2012)ADSGoogle Scholar
  35. 35.
    H. Wang, C. Zhang, F. Rana, Nano Lett. 15, 339–345 (2014)ADSGoogle Scholar
  36. 36.
    J. Shang, C. Cong, X. Shen, W. Yang, C. Zou, N. Peimyoo, B. Cao, M. Eginligil, W. Lin, W. Huang, Phys. Rev. Mater. 1, 074001 (2017)Google Scholar
  37. 37.
    S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J.S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, Sci. Rep. 3, 2657 (2013)Google Scholar
  38. 38.
    T.C. Berkelbach, M.S. Hybertsen, D.R. Reichman, Phys. Rev. B 88, 045318 (2013)ADSGoogle Scholar
  39. 39.
    C. Zhang, H. Wang, W. Chan, C. Manolatou, F. Rana, Phys. Rev. B 89, 205436 (2014)ADSGoogle Scholar
  40. 40.
    J.S. Ross, S. Wu, H. Yu, N.J. Ghimire, A.M. Jones, G. Aivazian, J. Yan, D.G. Mandrus, D. Xiao, W. Yao, Nat. Commun. 4, 1474 (2013)ADSGoogle Scholar
  41. 41.
    C. Lui, A. Frenzel, D. Pilon, Y.-H. Lee, X. Ling, G. Akselrod, J. Kong, N. Gedik, Phys. Rev. Lett. 113, 166801 (2014)ADSGoogle Scholar
  42. 42.
    P. Bushuykin, B. Andreev, V.Y. Davydov, D. Lobanov, D. Kuritsyn, A. Yablonskiy, N. Averkiev, G. Savchenko, Z. Krasilnik, J. Appl. Phys. 123, 195701 (2018)ADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Hunan Provincial Key Laboratory of Micro-Nano Energy Materials and Devices and Faculty of Physics and Optoelectronic EngineeringXiangtan UniversityHunanPeople’s Republic of China
  2. 2.Laboratory for Quantum Engineering and Micro-Nano Energy TechnologyXiangtan UniversityHunanPeople’s Republic of China

Personalised recommendations