Advertisement

Applied Physics A

, 125:774 | Cite as

Dot size variability induced changes in the optical absorption spectra of interdiffused quantum dot systems

  • Shambhu Sharan Kumar Sinha
  • Subindu KumarEmail author
  • Mukul Kumar Das
Article
  • 45 Downloads

Abstract

In this work, we have quantified the effects of dot size variability on the interband optical absorption spectra of interdiffused III–V quantum dot (QD) systems through analytical models which agree well with experimental data. The variability function induced due to inhomogeneous nature of dot size distribution has been considered to be Gaussian in nature, where individual dots have been assumed to be lens-shaped having inhomogeneous material composition inside the dot. This is necessary to consider any realistic interdiffused system. Such an assumption is not in line-up with the conventional methodologies reported earlier on the subject, where the QD composition was considered to be homogeneous, presenting an ideal or quasi-ideal situation which may be applicable only for dot structures in absence of interdiffusion. Moreover, for the first time, the effects of dot size variability and interdiffusion on the optical spectra of QD systems have been analysed in the same platform. The effects of dot size deviation, QD aspect ratio, core group III content inside the dot, standard deviation, and so on, on the optical absorption spectra have been demonstrated.

Notes

Acknowledgements

The author, S.K thank Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India, for support.

References

  1. 1.
    A.V. Barve, S.J. Lee, S.K. Noh, S. Krishna, Review of current progress in quantum dot infrared photodetectors. Laser Photon. Rev. 4(6), 738–750 (2010)ADSGoogle Scholar
  2. 2.
    T. Frost, A. Banerjee, K. Sun, S.L. Chuang, P. Bhattacharya, Quantum dot red (λ = 630 nm) laser. IEEE J. Quantum Electron. 49(11), 923–931 (2013)ADSGoogle Scholar
  3. 3.
    S. Wolde, Y.F. Lao, A.G.U. Perera, Y.H. Zhang, T.M. Wang, J.O. Kim, T. Schuler-Sandy, Z.B. Tian, S. Krishna, Noise, gain, and capture probability of p-type InAs-GaAs quantum-dot and quantum dot-in-well infrared photodetectors. J. Appl. Phys. 121(24), 244501 (2017)ADSGoogle Scholar
  4. 4.
    P. Madejczyk, W. Gawron, P. Martyniuk, A.K. Eblowski, A. Piotrowski, J. Pawluczyk, W. Pusz, A. Kowalewski, J. Piotrowski, A. Rogalski, MOCVD grown HgCdTe device structure for ambient temperature LWIR detectors. Semicond. Sci. Technol. 28(10), 105017 (2013)ADSGoogle Scholar
  5. 5.
    A.M. Itsuno, J.D. Phillips, S. Velicu, Mid-wave infrared HgCdTe nBn photodetector. Appl. Phys. Lett. 100(16), 161102 (2012)ADSGoogle Scholar
  6. 6.
    Y.F. Lao, P.K. Pitigala, A.G. Unil Perera, E. Plis, S.S. Krishna, Band offsets and carrier dynamics of type-II InAs/GaSb superlattice photodetectors studied by internal photoemission spectroscopy. Appl. Phys. Lett. 103(18), 181110 (2013)ADSGoogle Scholar
  7. 7.
    E.A. DeCuir Jr., G.P. Meissner, P.S. Wijewarnasuriya, N. Gautam, S. Krishna, N.K. Dhar, R.E. Welser, A.K. Sood, Long-wave type-II superlattice detectors with unipolar electron and hole barriers. Opt. Eng. 51(12), 124001 (2012)ADSGoogle Scholar
  8. 8.
    A. Rogalski, J. Antoszewski, L. Faraone, Third-generation infrared photodetector arrays. J. Appl. Phys. 105(9), 091101 (2009)ADSGoogle Scholar
  9. 9.
    W.Y. Wu, J.N. Schulman, T.Y. Hsu, U. Efron, Effect of size nonuniformity on the absorption spectrum of a semiconductor quntum dot system. Appl Phys Lett 51(10), 710–712 (1987)ADSGoogle Scholar
  10. 10.
    S. Uchida, N. Ozaki, T. Nakahama, H. Oda, N. Ikeda, Y. Sugimoto, Ultra-small near-infrared multi-wavelength light source using a hetrojunction photonic crystal waveguide and self-assembled InAs quantum dots. Jpn. J. Appl. Phys. 56(5), 050303 (2017)ADSGoogle Scholar
  11. 11.
    S. Kumar, D. Biswas, Effects of a Gaussian size distribution on the absorption spectra of III–V semiconductor quantum dots. J. Appl. Phys. 102(8), 084305 (2007)ADSGoogle Scholar
  12. 12.
    D.L. Ferreira, J.L.A. Alves, The effects of shape and size nonuniformity on the absorption spectrum of semiconductor quantum dots. Nanotechnology 15(8), 975–981 (2004)ADSMathSciNetGoogle Scholar
  13. 13.
    MYu. Petrov, I.V. Ignatiev, S.V. Poltavtsev, A. Greilich, A. Bauschulte, D.R. Yakovlev, M. Bayer, Effect of thermal annealing on the hyperfine interaction in InAs/GaAs quantum dots. Phys. Rev. B 78(4), 045315 (2008)ADSGoogle Scholar
  14. 14.
    J.F. Chen, Y.C. Lin, C.H. Chiang, R.C.C. Chen, Y.F. Chen, Y.H. Wu, L. Chang, How do In As quantum dots relax when the InAs growth thickness exceeds the dislocation-induced critical thickness? J. Appl. Phys. 111(1), 013709 (2012)ADSGoogle Scholar
  15. 15.
    E.H. Li, Interdiffusion as a means of fabricating parabolic quantum wells for the enhancement of the nonlinear third-order susceptibility by triple resonance. Appl. Phys. Lett. 69(4), 460–462 (1996)ADSMathSciNetGoogle Scholar
  16. 16.
    O. Gunawan, H.S. Djie, B.S. Ooi, Electronics states of interdiffused quantum dots. Phys. Rev. B 71(20), 205319 (2005)ADSGoogle Scholar
  17. 17.
    M. Souaf, M. Baira, B. Llahi, L. Saxi, H. Maaref, Numerical investigation of the postgrowth intermixing effects on the optical properties of Inas/GaAs quantum dots. Phys. B 447, 7–11 (2014)ADSGoogle Scholar
  18. 18.
    R. Leon, Y. Kim, C. Jagadish, M. Gal, J. Zou, D.J.H. Cockayne, Effects of interdiffusion on the luminescence of InGaAs/GaAs quantum dots. Appl. Phys. Lett. 69(13), 1888–1890 (1996)ADSGoogle Scholar
  19. 19.
    C. Lobo, R. Leon, S. Fafrad, P.G. Piva, Intermixing induced changes in the radiative emission from III–V quantum dots. Appl. Phys. Lett. 72(22), 2850–2852 (1998)ADSGoogle Scholar
  20. 20.
    A. Babiński, J. Jasiński, R. Boźek, A. Szepielow, J.M. Baranowski, Rapid thermal annealing of InAs/GaAs quantum dots under a GaAs proximity cap. Appl. Phys. Lett. 79(16), 2576–2578 (2001)ADSGoogle Scholar
  21. 21.
    H.S. Djie, D.-N. Wang, B.S. Ooi, J.C.M. Hwang, X.-M. Fang, Y. Wu, J.M. Fastenau, W.K. Liu, Intermixing of InGaAs quantum dots grown by cycled monolayer deposition. J. Appl. Phys. 100(3), 033527 (2006)ADSGoogle Scholar
  22. 22.
    M. Srujan, K. Ghosh, S. Sengupta, S. Chakrabarti, Presentation and experimental validation of a model for the effect of thermal annealing on the photoluminescence of self-assembled InAs/GaAs quantum dots. J. Appl. Phys. 107(12), 123107 (2010)ADSGoogle Scholar
  23. 23.
    M. Yahyaoui, K. Sellami, S. Ben Radhia, K. Boujdaria, M. Chamarro, B. Eble, C. Testelin, A. Lemaître, Effects of strain on the optoelectronic properties of annealed InGaAs/GaAs self-assembled quantum dots. Semicond. Sci. Technol. 29(7), 075013 (2014)ADSGoogle Scholar
  24. 24.
    P.M. Lam, J. Wu, S. Hatch, D. Kim, M. Tang, H. Liu, J. Wilson, R. Allison, Effect of rapid thermal annealing on InAs/GaAs quantum dot solar cells. IET Optoelectron. 9(2), 65–68 (2015)Google Scholar
  25. 25.
    H. Eisele, A. Lenze, R. Heitz, R. Timm, M. Dähne, Y. Temko, T. Suzuki, K. Jacobi, Change of InAs/GaAs quantum dot shape and composition during capping. J. Appl. Phys. 104(12), 124301 (2008)ADSGoogle Scholar
  26. 26.
    A.D. Utrilla, D.F. Grossi, D.F. Reyes, A. Gonzalo, V. Braza, T. Ben, D. González, A. Guzman, A. Hierro, P.M. Koenraad, J.M. Ullaa, Size and shape tenability of self- assembled InAs/GaAs nanostructures through the capping rate. Appl. Surf. Sci. 444, 260–266 (2018)ADSGoogle Scholar
  27. 27.
    J.M. Ullaa, D.F. Reyes, A.D. Utrilla, A. Guzman, A. Hierro, T. Ben, D. González, Capping layer growth rate and optical and structural properties of GaAsSbN- capped InAs/GaAs quantum dots. J. Appl. Phys. 116(13), 134301 (2014)ADSGoogle Scholar
  28. 28.
    D.F. Reyes, J.M. Ullaa, A. Guzman, A. Hierro, D.L. Sales, R. Beanland, A.M. Sanchez, D. González, Effect of annealing in the Sb and In distribution of type II GaAsSb- capped InAs quantum dots. Semicond. Sci. Technol. 30(11), 114006 (2015)ADSGoogle Scholar
  29. 29.
    D. González, D.F. Reyes, T. Ben, A.D. Utrilla, A. Guzman, A. Hierro, J.M. Ullaa, Influence of Sb/N contents during capping process on the morphology of InAs/GaAs quantum dots. Sol. Energy Mater. Sol. Cells 145, 154–161 (2016)Google Scholar
  30. 30.
    D. González, D.F. Reyes, A.D. Utrilla, T. Ben, V. Braza, A. Guzman, A. Hierro, J.M. Ullaa, General route for the decomposition of InAs quantum dots during the capping process. Nanotechnology 27(12), 125703 (2016)ADSGoogle Scholar
  31. 31.
    J.G. Keizer, J.M. Ullaa, A.D. Utrilla, P.M. Koenraad, InAs quantum dot morphology after capping with In, N, Sb alloyed thin films. Appl. Phys. Lett. 104(5), 053116 (2014)ADSGoogle Scholar
  32. 32.
    D. González, V. Braza, A.D. Utrilla, A. Gonzalo, D.F. Reyes, T. Ben, A. Guzman, A. Hierro, J.M. Ullaa, Quantitative analysis of the interplay between InAs quantum dots and wetting layer during the GaAs capping process. Nanotechnology 28(42), 425702 (2017)ADSGoogle Scholar
  33. 33.
    T. Garm, Exciton states in spherical parabolic GaAs quantum dots. J. Phys. Condens. Matter 8(31), 5725–5735 (1996)ADSGoogle Scholar
  34. 34.
    T. Ezaki, N. Mori, C. Hamaguchi, Electronic structures in circular, elliptic, and triangular quantum dots. Phys. Rev. B 56(11), 6428 (1997)ADSGoogle Scholar
  35. 35.
    T. Ezaki, Y. Sugimoto, N. Mori, C. Hamaguchi, Electronic properties in quantum dots with asymmetric confining potential. Semicond. Sci. Technol. 13(8A), A1–A3 (1998)ADSGoogle Scholar
  36. 36.
    Y. Huang, C. Lien, The enhancement of optical third harmonic susceptibility in a parabolic quantum well by triple resonance. J. Appl. Phys. 75(6), 3223–3225 (1994)ADSGoogle Scholar
  37. 37.
    H. Ilatikhameneh, T.A. Ameen, G. Klimeck, R. Rahman, Universal behavior of atomistic strain in self-assembled quantum dots. IEEE J. Quantum Electron. 52(07), 7000308 (2016)Google Scholar
  38. 38.
    G.L. Bir, G.E. Pikus, P. Shelnitz, D. Louvish, Symmetry and strain-induced effect in semiconductors (Wiley, New York, 1974)Google Scholar
  39. 39.
    S. Adachi, Physical properties of III-V semiconductor compound: InP, InAs, GaAs, GaP, InGaAs and InGaAsP (Wiley, New York, 1992)Google Scholar
  40. 40.
    A.D.B. Maia, E.C.F. da Silva, A.A. Quivy, V. Bindilatti, V.M. de Aquino, I.F.L. Dias, The influence of different indium-composition profiles on the electronic structures of lens-shaped InxGa1-xAs quantum dots. J. Phys. D Appl. Phys. 45(22), 225104 (2012)ADSGoogle Scholar
  41. 41.
    O. Stier, M. Grundmann, B. Bimberg, Electronic and optical properties of strained quantum dots modeled by 8-band k.p theory. 59 (8), 5688 (1999)Google Scholar
  42. 42.
    J. Callaway, Quantum theory of the solid state (Academic Press, New York, 1974)Google Scholar
  43. 43.
    D.L. Aronstein, C.R. Stroud Jr., General series solution for finite square-well energy levels for use in wave-packet studies. Am. J. Phys. 68(10), 943 (2000)ADSGoogle Scholar
  44. 44.
    R. Heitz, M. Grundmann, N.N. Ledentsov, L. Eckey, M. Veit, D. Bimberg, V.M. Ustinov, A.Y. Egrov, A.E. Zhukov, P.S. Kop’ev, Z.I. Alferov, Multiphonon-relaxation processes in self-organized InAs/GaAs quantum dots. Appl. Phys. Lett. 68(3), 361–363 (1995)ADSGoogle Scholar
  45. 45.
    S. Malik, C. Roberts, R. Murray, M. Pate, Tuning self-assembled InAs quantum dots by rapid thermal annealing. Appl. Phys. Lett. 71(14), 1987 (1997)ADSGoogle Scholar
  46. 46.
    M. Califano, P. Harrison, Presentation and experimental validation of a single-band, constant-potential model for self-assembled InAs/GaAs quantum dots. Phys. Rev. B 61(16), 10959–10965 (2000)ADSGoogle Scholar
  47. 47.
    M. Usman, In-plane polarization anisotropy of ground state optical intensity in InAS/GaAs quantum dots. J. Appl. Phys. 110(9), 094512 (2011)ADSGoogle Scholar
  48. 48.
    A.J. Williamson, L.W. Wang, A. Zunger, Theoretical interpretation of the experimental electronic structure of lens-shaped self-assembled InAs/GaAs quntum dots. Phys. Rev. B 62(19), 12963–12977 (2000)ADSGoogle Scholar
  49. 49.
    M. Usman, V. Braza, Y.-H.M. Tan, H. Ryu, S.S. Ahmed, H.J. Krenner, T.B. Boykin, G. Klimeck, Quantitative excited state spectroscopy of a single InGaAs quantum dot molecule through multi-million-atom electronic structure calculations. Nanotechnology 22(31), 315709 (2011)Google Scholar
  50. 50.
    M. Usman, S. Heck, E. Clarke, P. Spencer, H. Ryu, R. Murray, G. Klimeck, Experimental and theoretical study of polarization-dependent optical transitions in InAs quantum dots at telecommunication-wavelengths (1300-1500 nm). J. Appl. Phys. 109(10), 104510 (2011)ADSGoogle Scholar
  51. 51.
    I. Saїdi, K. Sellami, M. Yahyaoui, C. Testelin, K. Boudaria, Electron and hole energy levels in InAs/GaAs quantum dots: size and magnetic field effects. J. Appl. Phys. 109(3), 033703 (2011)ADSGoogle Scholar
  52. 52.
    N. Baer, S. Schulz, P. Gartner, S. Schumacher, G. Czycholl, F. Jahnke, Influence of symmetry and Coulomb correlation effects on the optical properties of nitride quantum dots. Phys. Rev. B 76(7), 075310 (2007)ADSGoogle Scholar
  53. 53.
    S. Sauer, J.M. Daniels, D.E. Reiter, T. Kuhn, A. Vagov, V.M. Axt, Lattice fluctuations at a double phonon frequency with and without squeezing: an exactly solvable model of an optically excited quantum dot. Phys. Rev. Lett. 105(15), 157401 (2010)ADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electronics EngineeringIndian Institute of Technology (ISM)DhanbadIndia

Personalised recommendations