Applied Physics A

, 125:755 | Cite as

Effect of laser welding on microstructure and mechanical properties of biomedical Ti6Al4V

  • Hayriye Ertek EmreEmail author
  • Şennur Arslan


Ti6Al4V titanium alloys are usually used in chemical industry and biomedical sectors as an implant material. In this study, the effect of laser welding on mechanical and microstructural behavior of biomedical Ti6Al4V sheets with different welding speeds was investigated in detailed. The mechanical properties of laser welded joints are investigated by tensile test and hardness measurements. Fracture morphologies and microstructure evaluations are also investigated. It was found that the laser-welded joints have lower tensile strength and elongation as compared to the base metal. The maximum tensile strength was obtained at 250 cm/min welding speed for laser welded joints. The metallographic investigation revealed that weld metal decorated by coarser acicular α′ martensite microstructure within the finer prior-β grains and grain boundary α at higher welding speeds.



This work was supported by research fund of the Karabük University. Project number: FYL-2019-2020.


  1. 1.
    S.T. Auwal, S. Ramesh, F. Yusof, S.M. Manladan, A review on laser beam welding of titanium alloys. Int. J. Adv. Manuf. Technol. 97, 1071–1098 (2018)CrossRefGoogle Scholar
  2. 2.
    C. Casavola, C. Pappalettere, F. Tattoli, Static and fatigue characterization of titanium alloy welded joints. Mech. Mater. 41, 231–243 (2009)CrossRefGoogle Scholar
  3. 3.
    K. Richter, W. Behr, U. Reisgen, Low heat welding of titanium materials with a pulsed Nd:YAG laser. Materialwiss Werkstofftech 38, 51–56 (2007)CrossRefGoogle Scholar
  4. 4.
    N. Kashaev, V. Ventzke, M. Horstmann, S. Riekehr, G. Yashin, L. Stutz, W. Beck, Microstructure and mechanical properties of laser beam welded joints between fine-grained and standard Ti6Al4V sheets subjected to superplastic forming. Adv. Eng. Mater. 17, 374–382 (2015)CrossRefGoogle Scholar
  5. 5.
    J.P. Bergmann, Mechanical behaviour of overlap joints of titanium. Sci. Technol. Weld. Join. 10, 50–60 (2005)CrossRefGoogle Scholar
  6. 6.
    R. Spina, D. Sorgente, G. Palumbo, L.D. Scintilla, M. Brandizzi, A.A. Satriano, T-joints of Ti alloys with hybrid laser-MIG welding: macro-graphic and micro-hardness analyses, in Proceedings of SPIE, Advances in Slow and Fast Light V, San Francisco (2012), p. 8239Google Scholar
  7. 7.
    J. Shi, G. Song, J. Chi, Effect of active gas on weld appearance and performance in laser-TIG hybrid welded titanium alloy. Int. J. Lightweight Mater. Manuf. 1, 47–53 (2018)Google Scholar
  8. 8.
    M. Wang, M. Jiang, Q. Wie, K. Gu, Techniques of laser-TIG hybrid T-shape joint welding of titanium alloy. Adv. Mater. Res 841, 291–294 (2011)Google Scholar
  9. 9.
    C.Y. Chiu, M.Y. Lu, L.W. Tsay, Dissimilar laser welding of Ti6Al4V to Ti-6Al-6V-2Sn. Adv. Mater. Res. 295–297, 2353–2357 (2011)CrossRefGoogle Scholar
  10. 10.
    U. Kumar, D.K. Gope, R. Kumar, S. Chattopadhyaya, A.K. Das, A. Pramanik, G. Krolczyk, Investigation of microstructure and mechanical properties of titanium alloy sheet using low power Nd-YAG laser welding process. Kovove Mater. 56, 121–129 (2018). CrossRefGoogle Scholar
  11. 11.
    E. Akman, A. Demir, T. Canel, T. Sınmazcelik, Laser welding of Ti6Al4V titanium alloys. J. Mater. Process. Technol. 209, 3705–3713 (2009)CrossRefGoogle Scholar
  12. 12.
    F. Caiazzo, F. Curcio, G. Daurelio, F.M.C. Minutolo, Ti6Al4V sheets lap and butt joints carried out by CO2 laser: mechanical and morphological characterization. J. Mater. Process. Technol. 149, 546–552 (2004). CrossRefGoogle Scholar
  13. 13.
    P.H. Chang, T.L. Teng, Numerical and experimental investigations on the residual stresses of the butt-welded joints. Comput. Mater. Sci. 29, 511–522 (2004)CrossRefGoogle Scholar
  14. 14.
    B. Brickstad, B. Josefson, A parametric study of residual stresses in multi-pass butt-welded stainless steel pipes. Int. J. Press. Vessels Pip. 75, 11–25 (1998)CrossRefGoogle Scholar
  15. 15.
    G. Yan, M.J. Tanb, A. Crivoic, F. Lid, S. Kumare, C. How, N. Chia, Improving the mechanical properties of TIG welding Ti6Al4V by post weld heat treatment. Proc. Eng. 207, 633–638 (2017)CrossRefGoogle Scholar
  16. 16.
    K. Thangaraj, A. Dasgupta, S. Saibaba, M. Vijayalakshmi, I. Samajdar, Study of texture and microtexture during β to α + β transformation in a Ti-5Ta-1.8Nb alloy. Mater. Sci. Eng. A 485, 581–588 (2008)CrossRefGoogle Scholar
  17. 17.
    M. Heidarbeigy, F. Karimzadeh, A. Saatchi, Corrosion and galvanic coupling of heat treated Ti6Al4V alloy weldment. Mater. Lett. 62, 1575–1578 (2008)CrossRefGoogle Scholar
  18. 18.
    L. Chen, L. Hu, S. Gong, Study on the porosity of CO2 laser welding of titanium alloy. China Weld. (English Edition) 15(1), 1–5 (2006)Google Scholar
  19. 19.
    F. Caiazzo, F. Curcio, G. Daurelio, F. Memola, C. Minutolo, Ti6Al4V sheets lap and butt joints carried out by CO2 laser: mechanical and morphological characterization. J. Mater. Process. Technol. 149, 546–552 (2004)CrossRefGoogle Scholar
  20. 20.
    M. Mehrpouya et al., Laser welding of NiTi shape memory sheets using a diode laser. Opt. Laser Technol. 108, 142–149 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    K. Manonmani, N. Murugan, G. Buvanasekaran, Effects of process parameters on the bead geometry of laser beam butt welded stainless steel sheets. Int. J. Adv. Manuf. Technol. 32, 1125–1133 (2007)CrossRefGoogle Scholar
  22. 22.
    G. Casalino, M. Mortello, S.L. Campanelli, Ytterbium fiber laser welding of Ti6Al4V alloy. J. Manuf. Process. 20, 250–256 (2015)CrossRefGoogle Scholar
  23. 23.
    S. Katayama, in Handbook of Laser Welding Technologies, 1st edn. Woodhead Publishing Series in Electronic and Optical Materials. Elsevier, UK, pp. 50–654 (2013)CrossRefGoogle Scholar
  24. 24.
    R.E. Lewis, Metallurgical investigation of fracture in the Ti-6211 alloy, in Proceedings of Ti-6211 Basic Research Program, ed. by B.A. Macdonald, O.P. Arora, B.B. Rath (ONR, Washington, D.C, 1982), pp. 297–330Google Scholar
  25. 25.
    B.K. Damkroger, G.R. Edward, B.B. Rath, Investigation of subsolidus weld cracking in alpha-beta titanium alloys. Welding Journal 7, 290–302 (1989)Google Scholar
  26. 26.
    D. Hayduk, B.K. Damkroger, G.R. Edwards, D.L. Olson, Cracking susceptibility of Ti-6AI-2Nb-1Ta-0.8Mo as determined by the vareelongationt test. Weld. J. 9, 251–260 (1986)Google Scholar
  27. 27.
    P. Hilton, J. Blackburn, P. Chong, Welding of Ti6Al4V with fibre delivered laser beams, in Proceedings of ICALEO (Laser Institute of America, Orlando, 2007), pp. 887–895Google Scholar
  28. 28.
    S. Mueller, E. Stiles, R. Dienemann, Study of porosity formation during laser welding of Ti6Al4V, in Proceedings of ICALEO, Temecula (Laser Institute of America, Orlando, 2008), pp. 133–138Google Scholar
  29. 29.
    F. Fomin, V. Ventzke, F. Dorn, N. Levichev, N. Kashaev, Effect of microstructure transformations on fatigue properties of laser beam welded Ti-6Al-4V butt joints subjected to postweld heat treatment, ed. by T. Tański (IntechOpen, 2017), pp. 111–141Google Scholar
  30. 30.
    M. Mehrpouya, A. Gisario, G.B. Broggiato, M. Puopolo, S. Vesco, M. Barletta, Effect of welding parameters on functionality of dissimilar laser-welded NiTi superelastic (SE) to shape memory effect (SME) wires. Int. J. Adv. Manuf. Technol. 103, 1593–1601 (2019)CrossRefGoogle Scholar
  31. 31.
    M. Mehrpouya, A. Gisario, M. Elahinia, Laser welding of NiTi shape memory alloy: a review. J. Manuf. Process. 31, 162–186 (2018)CrossRefGoogle Scholar
  32. 32.
    S.H.H. Wang, M.D.D. Wei, L.W.W. Tsay, Tensile properties of LBW welds in Ti–6Al–4V alloy at evaluated temperatures below 450 °C. Mater. Lett. 57, 1815–1823 (2003)CrossRefGoogle Scholar
  33. 33.
    A.S.H. Kabir, X. Cao, M. Medraj, P. Wanjara , J. Cuddy, A. Birur, effect of welding speed and defocusing distance on the quality of laser welded Ti6Al4V, in Laser Applications in Materials Processing, October 17–21, 2010, Houston, pp. 2787–2797Google Scholar
  34. 34.
    P. Saha, S. Datta, M.S. Raza, D.K. Pratihar, Effects of heat input on weld-bead geometry, surface chemical composition, corrosion behavior and thermal properties of fiber laser-welded nitinol shape memory alloy. JMEPEG 28, 2754–2763 (2019)ADSCrossRefGoogle Scholar
  35. 35.
    Y. Fan, P.H. Shipway, G.D. Tansley, J. Xu, The effect of heat treatment on mechanical properties of pulsed ND:YAG welded thin Ti6Al4V. Adv. Mater. Res. 189–193, 3672–3677 (2011)CrossRefGoogle Scholar
  36. 36.
    J. Ahn, L. Chen, C.M. Davies, J.P. Dear, Parametric optimisation and microstructural analysis on high power Yb-fibre laser welding of Ti–6Al–4V. Opt. Lasers Eng. 86, 156–171 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Manufacturing Engineering, Faculty of TechnologyKarabük UniversityKarabükTurkey

Personalised recommendations