Advertisement

Applied Physics A

, 125:742 | Cite as

Investigation on the synthesis and photocatalytic activity of activated carbon–cerium oxide (AC–CeO2) nanocomposite

  • G. JayakumarEmail author
  • A. Albert Irudayaraj
  • A. Dhayal Raj
Article
  • 71 Downloads

Abstract

Nano-sized photocatalyst cerium oxide (CeO2) particles and activated carbon–cerium oxide (AC–CeO2) composite are prepared by facile hydrothermal technique. Their properties are analyzed by subjecting them to characterization techniques such as powder X-ray diffraction (PXRD), high-resolution scanning electron microscopy (HRSEM), energy dispersive X-ray analysis (EDX), high-resolution transmission electron microscopy (HRTEM), Fourier transform infra-red spectroscopy (FTIR) and Raman spectroscopy. The photocatalytic activity of the prepared samples is monitored by UV–visible spectrophotometer. The PXRD, FTIR, Raman and EDX analyses confirm the formation of CeO2 nanoparticles. The PXRD studies revealed that the CeO2 nanoparticles and AC–CeO2 nanocomposite have face centered cubic structure. The average crystallite size of CeO2 nanoparticles and AC–CeO2 nanocomposite, estimated using Scherrer formula, is found to be 21 nm and 7 nm. The HRSEM images show that the CeO2 nanoparticles and AC–CeO2 nanocomposite have spherical morphology and some agglomeration. The HRTEM images strongly confirm spherical morphology of both CeO2 nanoparticles and AC–CeO2 nanocomposite. The particle size of the CeO2 nanoparticles and AC–CeO2 nanocomposite are in the size range 20–30 nm and 7–15 nm, respectively. The selected area electron diffraction (SAED) patterns reveal that both samples are polycrystalline in nature. The photocatalytic activity of the synthesized CeO2 nanoparticles and AC–CeO2 nanocomposite is measured by degrading methylene blue dye under solar radiation. The photocatalytic activity study shows that the AC–CeO2 nanocomposite has a degradation efficiency of 94% in 1 h for methylene blue, which is remarkably high when compared to that of CeO2 nanoparticles.

Notes

Acknowledgements

This research was partially supported by Sacred Heart College (Autonomous), Tirupattur, under the Don Bosco research grant (SHC/DB Grant/2017/03).

References

  1. 1.
    C.S. Gomes, J.S. Piccin, M. Gutterres, Process Saf. Environ. 99, 98–106 (2016)CrossRefGoogle Scholar
  2. 2.
    M.C. Hasegawa, A.M. Barbosa, K. Takashima, J. Serb. Chem. Soc. 76(3), 439–446 (2011)CrossRefGoogle Scholar
  3. 3.
    N. Dabas, K.K. Yadav, A.K. Ganguli, M. Jha, J. Environ. Manag. 240, 352–358 (2019)CrossRefGoogle Scholar
  4. 4.
    W.M. El Rouby, A.A. Farghali, A. Hamdedein, Water Sci. Technol. 74(10), 2325–2336 (2016)CrossRefGoogle Scholar
  5. 5.
    E.K. Shirazi, J.W. Metzger, K. Fischer, A.H. Hassani, Chemosphere (2019).  https://doi.org/10.1016/j.chemosphere.2019.05.224 CrossRefGoogle Scholar
  6. 6.
    Y. Liu, K. Zhang, X. Yin, W. Yang, H. Zhu, J. Magn. Magn. Mater. 403, 18–29 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    K.L. Ameta, N. Papnai, R. Ameta, J. Mater. 2014, 1–5 (2014)CrossRefGoogle Scholar
  8. 8.
    K.S. Muduli, S. Wang, S. Chen, C.F. Ng, C.H.A. Huan, T.C. Sum, H.S. Soo, Beilstein J. Nanotechnol. 5, 517–523 (2014)CrossRefGoogle Scholar
  9. 9.
    P. Kaur, R. Thakur, H. Malwal, A. Manuja, A. Chaudhury, Biocatal. Agric. Biotechnol. (2018).  https://doi.org/10.1016/j.bcab.2018.03.002 CrossRefGoogle Scholar
  10. 10.
    M. Rochkind, S. Pasternak, Y. Paz, Molecules 20(1), 88–110 (2015)CrossRefGoogle Scholar
  11. 11.
    C. Luo, H. Wang, W. Dong, X. Zhang, RSC Adv. 7, 41799–41811 (2017)CrossRefGoogle Scholar
  12. 12.
    V.L. Prasanna, V. Rajagopalan, Sci. Rep. 6(1), 1–10 (2016)CrossRefGoogle Scholar
  13. 13.
    L. Haijiao, J. Wang, M. Stoller, T. Wang, Y. Bao, H. Hao, Adv. Mater. Sci. Eng. 4964828, 1–10 (2016)Google Scholar
  14. 14.
    A. Barroso-Bogeat, M.A. Franco, C. Fernandez-Gonzalez, A.M. Garcıa, V.G. Serrano, Phys. Chem. Chem. Phys. 16, 25161–25175 (2014)CrossRefGoogle Scholar
  15. 15.
    S.M.C. Rosa, A.B.S. Nossol, E. Nossol, A.J.G. Zarbin, P.G. Peralta-Zamora, J. Braz. Chem. Soc. 28(4), 582–588 (2017)Google Scholar
  16. 16.
    B. Xing, C. Shi, C. Zhang, G. Yi, L. Chen, H. Guo et al., J. Nanomaterials 1, 393648 (2016)Google Scholar
  17. 17.
    H. Sharififard, M. Soleimani, RSC Adv. 5, 80650–80660 (2015)CrossRefGoogle Scholar
  18. 18.
    D. Das, D.P. Samal, B.C. Meikap, J. Chem. Eng. Process. Technol. 6(5), 1–7 (2015)CrossRefGoogle Scholar
  19. 19.
    L. Giraldo, J.C. Moreno-Pirajan, J. Chem. 30(2), 451–461 (2014)Google Scholar
  20. 20.
    S. Supakanapitak, V. Boonamnuayvitaya, S. Jarudilokkul, Mater. Charact. 67, 83–92 (2012)CrossRefGoogle Scholar
  21. 21.
    T. Masui, H. Hirai, N. Imanaka, G. Adachi, T. Sakata, H. Mori, J. Mater. Sci. Lett. 21, 489–491 (2002)CrossRefGoogle Scholar
  22. 22.
    D.M.D.M. Prabaharan, K. Sadaiyandi, M. Mahendran, S. Sagadevan, Mater. Res. 9(2), 478–482 (2016)CrossRefGoogle Scholar
  23. 23.
    S. Sumathi, S. Bhatia, K.T. Lee, A.R. Mohamed, J. Appl. Sci. 10(12), 1052–1059 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    A. Salhi, A. Aarfane, S. Tahiri, L. Khamliche, M. Bensitel, F. Bentiss et al., Mediterr. J. Chem. 4(1), 59–67 (2015)CrossRefGoogle Scholar
  25. 25.
    H.R. Pouretedal, A. Kadkhodaie, Chin. J. Catal. 31, 1328–1334 (2010)CrossRefGoogle Scholar
  26. 26.
    R. Singh, M. Kumar, H. Khajuria, L. Tashi, H.N. Sheikh, J. Chin. Chem. Soc. 1, 1–7 (2018)Google Scholar
  27. 27.
    J. Lin, Z. Luo, J. Liu, P. Li, Mater. Sci. Semicond. Process. 87, 24–31 (2018)CrossRefGoogle Scholar
  28. 28.
    R. Sawana, Y. Somasundar, V.S. Iyer, B. Baruwati, Appl. Water Sci. 7, 1223–1230 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    M.L. Dos Santos, R.C. Lima, C.S. Riccardi, R.L. Tranquilin, P.R. Bueno, J.A. Varela et al., Mater. Lett. 62, 4509–4511 (2008)CrossRefGoogle Scholar
  30. 30.
    J. Cui, G.A. Hope, J. Spectrosc. 2015, 1–8 (2015)CrossRefGoogle Scholar
  31. 31.
    D.W. Wheeler, I. Khan, Vib. Spectrosc. 70, 200–206 (2014)CrossRefGoogle Scholar
  32. 32.
    Y.L. Lopez, G.G. Rosales, J.J. Becerril, J. Rare Earths 35(6), 551–558 (2017)CrossRefGoogle Scholar
  33. 33.
    S. Akshatha, S. Sreenivasa, L. Parashuram, V.U. Kumar, S.C. Sharma et al., J. Environ. Chem. Eng. (2019).  https://doi.org/10.1016/j.jece.2019.103053 CrossRefGoogle Scholar
  34. 34.
    W. Zhang, S. Gao, D. Chen, J. Rare Earths (2018).  https://doi.org/10.1016/j.jre.2018.12.007 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.PG and Research Department of PhysicsSacred Heart CollegeVellore DistrictIndia

Personalised recommendations