Applied Physics A

, 125:747 | Cite as

Epitaxial characteristics of MBE-grown ZnTe thin films on GaAs (211)B substrates

  • Elif OzceriEmail author
  • Enver Tarhan


Highly crystalline ZnTe thin films were grown on GaAs (211)B substrates by molecular beam epitaxy (MBE) for potential applications such as MCT detectors and optoelectronic devices. We investigated the effects of Te to Zn (VI/II) flux ratio on the quality of ZnTe films in terms of crystal orientation, elemental composition, surface roughness, and dislocation density. Atomic concentrations of Zn, Te, and oxygen complexes due to oxygen contamination on the film surfaces were analyzed by X-ray photoelectron spectroscopy. X-ray double crystal rocking curve full width half maximum (FWHM) of ZnTe (422) peak was observed as 233 arcseconds for a 1.66 μm thick film, which indicates high crystallinity. Wet chemical etching was applied to the films to quantify the crystal quality by calculating etch pit densities (EPD) from scanning electron microscope images. A very low EPD value of 1.7 × 107 cm−2 was measured. Additionally, the root mean square roughness values, obtained from atomic force microscopy topography images were in the range of 10–25 nm. These values were supported by FWHM values of red green blue color intensity histograms obtained from Nomarski Microscope images. The results of our analyses indicate that the VI/II flux ratios of 4 and 4.5 produce the best quality ZnTe films on GaAs (211)B substrates.



We would like to thank Orhan Öztürk, Elif Bilgilisoy, and Mustafa Polat for their help in XRD measurements. Our special thanks go to Gülnur Aygün and Lütfi Özyüzer for their support for XPS measurements. Additionally, we thank IYTE Material Research Center staff, especially Emine Bakali, for obtaining SEM images. A very heartfelt thanks and acknowledgements go to Yusuf Selamet for his support in all aspects of this work. Finally, we are grateful to SSM (Undersecretariat for Defence Industries of Turkey) and ASELSAN for their financial support.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. 1.
    L. Ouyang, J. Fan, S. Wang, X. Lu, Y.H. Zhang, X. Liu, J.K. Furdyna, D.J. Smith, J. Cryst. Growth 330, 30–34 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    T. Tanaka, Y. Kume, M. Nishio, Q. Guo, H. Ogawa, A. Yoshida, Jpn. J. Appl. Phys. 42, L362–L364 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    M. Nishio, K. Hayashida, Q. Guo, H. Ogawa, Appl. Surf. Sci. 169–170, 227–230 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    J.A. Garcia, A. Remón, V. Muñoz, R. Triboulet, J. Cryst. Growth 191, 685–691 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    T. Löffler, T. Hahn, M. Thomson, F. Jacob, H.G. Roskos, Opt. Express 13, 5353 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    D. Lee, J.E. Zucker, M.D. Divino, R.F. Austin, R.D. Feldman, K.L. Jones, A.M. Johnson, Appl. Phys. Lett. 59, 1867–1869 (1991)ADSCrossRefGoogle Scholar
  7. 7.
    S. Valette, G. Labrunie, J. Lizet, J. Appl. Phys. 46, 2731–2732 (1975)ADSCrossRefGoogle Scholar
  8. 8.
    S. Wang, D. Ding, X. Liu, X.-B. Zhang, D.J. Smith, J.K. Furdyna, Y.-H. Zhang, J. Cryst. Growth 311, 2116–2119 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    W. Wang, A. Lin, J.D. Phillips, J. Electron. Mater. 37, 1044–1048 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    W. Wang, J.D. Phillips, S.J. Kim, X. Pan, J. Electron. Mater. 40, 1674–1678 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    T. Tanaka, S. Kusaba, T. Mochinaga, K. Saito, Q. Guo, M. Nishio, K.M. Yu, W. Walukiewicz, Appl. Phys. Lett. 100, 011905 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    R.N. Jacobs, L.A. Almeida, J. Markunas, J. Pellegrino, M. Groenert, M. Jaime-Vasquez, N. Mahadik, C. Andrews, S.B. Qadri, T. Lee, M. Kim, J. Electron. Mater. 37, 1480–1487 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    W. Lei, R.J. Gu, J. Antoszewski, J. Dell, L. Faraone, J. Electron. Mater. 43, 2788–2794 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    L. He, L. Chen, Y. Wu, X.L. Fu, Y.Z. Wang, J. Wu, M.F. Yu, J.R. Yang, R.J. Ding, X.N. Hu, Y.J. Li, Q.Y. Zhang, J. Cryst. Growth 301–302, 268–272 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    J.P. Zanatta, G. Badano, P. Ballet, C. Largeron, J. Baylet, O. Gravrand, J. Rothman, P. Castelein, J.P. Chamonal, A. Million, G. Destefanis, S. Mibord, E. Brochier, P. Costa, J. Electron. Mater. 35, 1231–1236 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    J.M. Arias, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 9, 1646 (1991)ADSCrossRefGoogle Scholar
  17. 17.
    S. Rujirawat, L.A. Almeida, Y.P. Chen, S. Sivananthan, D.J. Smith, Appl. Phys. Lett. 71, 1810–1812 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    R.N. Jacobs, M. Jaime Vasquez, C.M. Lennon, C. Nozaki, L.A. Almeida, J. Pellegrino, J. Arias, C. Taylor, B. Wissman, J. Electron. Mater. 44, 3076–3081 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    L. He, X. Fu, Q. Wei, W. Wang, L. Chen, Y. Wu, X. Hu, J. Yang, Q. Zhang, R. Ding, X. Chen, W. Lu, J. Electron. Mater. 37, 1189–1199 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    J. Chai, O.C. Noriega, A. Dedigama, J.J. Kim, A.A. Savage, K. Doyle, C. Smith, N. Chau, J. Pena, J.H. Dinan, D.J. Smith, T.H. Myers, J. Electron. Mater. 42, 3090–3096 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    J. Fan, L. Ouyang, X. Liu, D. Ding, J.K. Furdyna, D.J. Smith, Y.-H. Zhang, J. Cryst. Growth 323, 127–131 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    M.S. Jang, S.H. Oh, K.H. Lee, J.H. Bahng, J.C. Choi, K.H. Jeong, H.L. Park, D.C. Choo, D.U. Lee, T.W. Kim, J. Phys. Chem. Solids 64, 357–360 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    Q. Guo, K. Takahashi, K. Saito, H. Akiyama, T. Tanaka, M. Nishio, Appl. Phys. Lett. 102, 092107 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    O. Arı, E. Bilgilisoy, E. Ozceri, Y. Selamet, J. Electron. Mater. 45, 4736–4741 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    E. Bilgilisoy, S. Özden, E. Bakali, M. Karakaya, Y. Selamet, J. Electron. Mater. 44, 3124–3133 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    J. Frühauf, E. Gärtner, S. Krönert, Shape and Functional Elements of the Bulk Silicon Microtechnique (Springer, Berlin, 2005)Google Scholar
  27. 27.
    W.J. Everson, C.K. Ard, J.L. Sepich, B.E. Dean, G.T. Neugebauer, H.F. Schaake, J. Electron. Mater. 24, 505–510 (1995)ADSCrossRefGoogle Scholar
  28. 28.
    E.P. Warekois, M.C. Lavine, A.N. Mariano, H.C. Gatos, J. Appl. Phys. 33, 690–696 (1962)ADSCrossRefGoogle Scholar
  29. 29.
    M.J. Fairlie, J.G. Akkerman, R.S. Timsit, J.M. Zavislan, in Proceedings of SPIE 0749, Metrology: Figure and Finish (1987), pp. 105–113Google Scholar
  30. 30.
    W. Mönch, Semiconductor Surfaces and Interfaces (Springer, Berlin, 2001)CrossRefGoogle Scholar
  31. 31.
    L.Q. Zhou, C. Chen, H. Jia, C. Ling, D. Banerjee, J.D. Phillips, Y. Wang, J. Electron. Mater. 43, 889–893 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    W. Mahmood, A. Thomas, A.U. Haq, N.A. Shah, M.F. Nasir, J. Phys. D. Appl. Phys. 50, 255503 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    Z. Zhang, B. Wang, P. Zhou, R. Kang, B. Zhang, D. Guo, Sci. Rep. 6, 26891 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    X.J. Wang, Y.B. Hou, Y. Chang, C.R. Becker, R.F. Klie, S. Sivananthan, J. Electron. Mater. 38, 1776–1780 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    S.Y. Woo, G.A. Devenyi, S. Ghanad-Tavakoli, R.N. Kleiman, J.S. Preston, G.A. Botton, Appl. Phys. Lett. 102, 132103 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    O. Arı, M. Polat, M. Karakaya, Y. Selamet, Phys. Status Solidi 12, 1211–1214 (2015)CrossRefGoogle Scholar
  37. 37.
    K. Nakagawa, K. Maeda, S. Takeuchi, Appl. Phys. Lett. 34, 574–575 (1979)ADSCrossRefGoogle Scholar
  38. 38.
    P.F. Fewster, S. Cole, A.F.W. Willoughby, M. Brown, J. Appl. Phys. 52, 4568–4571 (1981)ADSCrossRefGoogle Scholar
  39. 39.
    P.F. Fewster, P.A.C. Whiffin, J. Appl. Phys. 54, 4668–4670 (1983)ADSCrossRefGoogle Scholar
  40. 40.
    T. Asahi, T. Yabe, K. Sato, J. Electron. Mater. 33, 651–653 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringIzmir Institute of TechnologyIzmirTurkey
  2. 2.Department of PhysicsIzmir Institute of TechnologyIzmirTurkey

Personalised recommendations