Advertisement

Applied Physics A

, 125:744 | Cite as

Theoretical predictions of magnetic shape memory alloys in Gallium-rich Heusler compounds

  • Ying Wang
  • Xiong YangEmail author
  • Yanhong Xue
  • Mingrun Du
Article
  • 79 Downloads

Abstract

This paper provides a comprehensive study of the structural, magnetic, electronic, vibrational, and bulk mechanical properties for Ga2(Nb,Ta,W)X (X = Cr, Mn, Fe, Co, and Ni) Heusler alloys using first-principles density-functional theory. By considering the total energy, the structural type and magnetic configuration of cubic Ga2(Nb,Ta,W)X are determined. Analyzing the calculated formation energies allows determination of the compounds that are stable electronically. The total energy difference between the austenite and martensite phases indicates that all the alloys are prone to tetragonal transitions from the austenite to martensite phases. Furthermore, the martensitic transitions are demonstrated from the perspectives of the density of states, phonon dispersion, mechanical stability criteria, and elastic anisotropy ratio. The ratio of the shear to bulk moduli indicates that all the considered Ga2-based materials are inherently ductile, and most of the alloys possess much better ductility than the well-known Ni2MnGa material. Among the considered alloys, Ga2(Nb,Ta)X (X = Cr, Mn, and Fe) and Ga2WX (X = Cr, Mn, Fe, and Co), which have martensitic transition temperatures above room temperature, are expected to operate as new magnetic shape memory alloys.

Notes

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (3122015L016) and the National Natural Science Fund (11804384).

Supplementary material

339_2019_3041_MOESM1_ESM.docx (938 kb)
Supplementary material 1 (DOCX 938 kb)
339_2019_3041_MOESM2_ESM.docx (24 kb)
Supplementary material 2 (DOCX 24 kb)

References

  1. 1.
    K. Ullakko, J.K. Huang, C. Kantner, R.C. OHandley, V.V. Kokorin, Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl. Phys. Lett. 69, 1966–1968 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    S.J. Murray, M. Marioni, S.M. Allen, R.C. OHandley, T.A. Lograsso, 6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni–Mn–Ga. Appl. Phys. Lett. 77, 886–888 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    A. Sozinov, A.A. Likhachev, N. Lanska, K. Ullakko, Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase. Appl. Phys. Lett. 80, 1746–1748 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    G.D. Liu, J.L. Chen, Z.H. Liu, X.F. Dai, G.H. Wu, B. Zhang, X.X. Zhang, Martensitic transformation and shape memory effect in a ferromagnetic shape memory alloy: Mn2NiGa. Appl. Phys. Lett. 87, 262504-1–2625054-3 (2005)ADSGoogle Scholar
  5. 5.
    J. Marcos, L. Mañosa, A. Planes, F. Casanova, X. Batlle, A. Labarta, Multiscale origin of the magnetocaloric effect in Ni–Mn–Ga shape-memory alloys. Phys. Rev. B 68, 094401-1–094401-6 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    X. Zhou, W. Li, H.P. Kunkel, G. Williams, A criterion for enhancing the giant magnetocaloric effect: (Ni–Mn–Ga)-a promising new system for magnetic refrigeration. J. Phys. Condens. Matter 16, L39–L44 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, L. Manosa, A. Planes, Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys. Nat. Mater. 4, 450–454 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, H. Okamato, S. Kitakami, O. Oikawa, A. Fujita, T. Kanomata, K. Isida, Magnetic-field-induced shape recovery by reverse phase transformation. Nature (London) 439, 957–960 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    S. Singh, S.E. Muthu, A. Senyshyn, P. Rajput, E. Suard, S. Arumugam, S.R. Barman, Inverse magnetocaloric effect in Mn2NiGa and Mn1.75Ni1.25Ga magnetic shape memory alloys. Appl. Phys. Lett. 104, 051905-1–051905-4 (2014)ADSGoogle Scholar
  10. 10.
    D. Comtesse, M.E. Gruner, M. Ogura, V.V. Sokolovskiy, V.D. Buchelnikov, A. Gruenebohm, R. Arroyave, N. Singh, T. Cottschall, O. Gutfleisch, V.A. Chernenko, F. Albertini, S. Faehler, P. Entel, First-principles calculation of the instability leading to giant inverse magnetocaloric effects. Phys. Rev. B 89, 184403-1–184403-6 (2014)ADSGoogle Scholar
  11. 11.
    C. Biswas, R. Rawat, S.R. Barman, Large negative magnetoresistance in a ferromagnetic shape memory alloy: Ni2+xMn1−xGa. Appl. Phys. Lett. 86, 202508-1–202508-3 (2005)ADSGoogle Scholar
  12. 12.
    T. Roy, D. Pandey, A. Chakrabarti, Probing the possibility of coexistence of martensite transition and half-metallicity in Ni and Co-based full-Heusler alloys: an ab initio calculation. Phys. Rev. B 93, 184102-1–184102-15 (2016)ADSGoogle Scholar
  13. 13.
    T. Roy, A. Chakrabarti, Possibility of martensite transition in Pt–Y–Ga (Y=Cr, Mn, and Fe) system: an ab initio calculation of the bulk mechanical, electronic and magnetic properties. J. Magn. Magn. Mater. 401, 929–937 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    L. Wollmann, S. Chadov, J. Kübler, C. Felser, Magnetism in cubic manganese-rich Heusler compounds. Phys. Rev. B 90, 214420-1–214420-11 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    L. Wollmann, S. Chadov, J. Kübler, C. Felser, Magnetism in tetragonal manganese-rich Heusler compounds. Phys. Rev. B 92, 064417-1–064417-13 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    S.R. Barman, A. Chakrabarti, S. Singh, S. Banik, S. Bhardwaj, P.L. Paulose, B.A. Chalke, A.K. Panda, A. Mitra, A.M. Awasthi, Theoretical prediction and experimental study of a ferromagnetic shape memory alloy: Ga2MnNi. Phys. Rev. B 78, 134406-1–134406-6 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    G.J. Li, E.K. Liu, Y.J. Zhang, Y. Du, H.W. Zhang, W.H. Wang, G.H. Wu, Structure, magnetism, and magnetic compensation behavior of Co50−xMn25Ga25+x and Co50−xMn25+xGa25 Heusler alloys. J. Appl. Phys. 113, 103903-1–103903-10 (2013)ADSGoogle Scholar
  18. 18.
    J.H. Chen, E.K. Liu, X. Qi, H.Z. Luo, W.H. Wang, H.W. Zhang, S.G. Wang, J.W. Cai, G.H. Wu, Electronic structure, magnetism and phase stability of isostructural Ga2MnCo–Ga2MnV Heusler alloys from first principles. Comp. Mater. Sci. 89, 130–136 (2014)CrossRefGoogle Scholar
  19. 19.
    P. Hohenburg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)ADSCrossRefGoogle Scholar
  22. 22.
    Y.W. Ma, S. Awaji, K. Watanabe, M. Matsumoto, N. Kobayashi, X-ray diffraction study of the structural phase transition of Ni2MnGa alloys in high magnetic fields. Solid State Commun. 113, 671–676 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    J.Y. Rhee, Y. Kudryavtsev, J. Dubowik, Y. Lee, Electronic structure and magnetic properties of Ni2MnGa alloy films with different structural orders. J. Appl. Phys. 93, 5527–5530 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    A. Chakrabarti, M. Siewert, T. Roy, K. Mondal, A. Banerjee, M.E. Gruner, P. Entel, Ab initio studies of effect of copper substitution on the electronic and magnetic properties of Ni2MnGa and Mn2NiGa. Phys. Rev. B 88, 174116-1–174116-11 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    P.J. Brown, A.Y. Bargawi, J. Crangle, K.-U. Neumann, K.R.A. Ziebeck, Direct observation of a band Jahn–Teller effect in the martensitic phase transition of Ni2MnGa. J. Phys. Condens. Matter 11, 4715–4722 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    Y. Qawasmeh, B. Hamad, Investigation of the structural, electronic, and magnetic properties of Ni-based Heusler alloys from first principles. J. Appl. Phys. 111, 033905-1–033905-6 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    C. Bungaro, K.M. Rabe, First-principles study of lattice instabilities in ferromagnetic Ni2MnGa. Phys. Rev. B 68, 134104-1–134104-9 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    A.T. Zayak, P. Entel, K.M. Rabe, W.A. Adeagbo, M. Acet, Anomalous vibrational effects in nonmagnetic and magnetic Heusler alloys. Phys. Rev. B 72, 054113-1–054113-8 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    S. Paul, B. Sanyal, S. Ghosh, First-principles study of the lattice instabilities in Mn2NiX (X = Al, Ga, In, Sn) magnetic shape memory alloys. J. Phys. Condens. Matter 27, 035401-1–035401-9 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    J. Worgull, E. Petti, J. Trivisonno, Behavior of the elastic properties near an intermediate phase transition in Ni2MnGa. Phys. Rev. B 54, 15695–15699 (1996)ADSCrossRefGoogle Scholar
  31. 31.
    T.E. Stenger, J. Trivisonno, Ultrasonic study of the two-step martensitic phase transformation in Ni2MnGa. Phys. Rev. B 57, 2735–2739 (1998)ADSCrossRefGoogle Scholar
  32. 32.
    M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Clarendon, Oxford, 1956)zbMATHGoogle Scholar
  33. 33.
    R. Hill, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A 65, 349–354 (1952)ADSCrossRefGoogle Scholar
  34. 34.
    S.F. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45, 823–843 (1954)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of ScienceCivil Aviation University of ChinaTianjinChina

Personalised recommendations